ИЗМЕРЕНИЕ СПИНОВЫХ ПОЛЯРИЗУЕМОСТЕЙ ПРОТОНА

Восьмые Черенковские чтения (ФИАН, 14.04.2015)

Электромагнитные поляризуемости – фундаментальные характеристики составных систем, таких, как молекулы, атомы, ядра и адроны. Они описывают отклик системы на воздействие внешнего электрического или магнитного поля. Если магнитные моменты дают информацию о свойствах основного состояния системы, то поляризуемости содержат информацию о возбужденных состояних системы.

- Поляризуемость идеально проводящей сферы ~1/4 объема.
- Поляризуемость атома водорода ~1/10 объема.
- Для адронов поляризуемости гораздо меньше, чем объем, и имеют величину порядка 10⁻⁴ fm³, что связано с гораздо большей величиной квантовохромодинамических сил по сравнению с электромагнитными силами.
- Измерение поляризуемостей служит важнейшим тестом для теорий адронной структуры и КХД.

Комптоновское рассеяние & нуклонные поляризуемости

Электромагнитные поляризуемости получают из экспериментов по комптоновскому рассеянию, в которых поляризуемости вызывают отклонение сечения от величины, предсказываемой для рассеяния на бесструктурной частице Дирака.

$\gamma(q) + p(p) \rightarrow \gamma(q') + p(p')$

Гамильтониан комптоновского рассеяния (разложение по энергии налетающего фотона)

Zeroth Order - Mass and Electric Charge

$$H_{\rm eff}^{(0)} = \frac{\vec{\pi}^2}{2m} + \frac{e}{\phi} \qquad (\text{where } \vec{\pi} = \vec{p} - \frac{e\vec{A}}{A})$$

First Order - Anomalous Magnetic Moment

$$H_{\rm eff}^{(1)} = -\frac{e(1+\kappa)}{2m}\vec{\sigma}\cdot\vec{H} - \frac{e(1+2\kappa)}{8m^2}\vec{\sigma}\cdot\left[\vec{E}\times\vec{\pi}-\vec{\pi}\times\vec{E}\right]$$

Second Order - Electric and Magnetic polarisabilities

$$H_{\rm eff}^{(2)} = -4\pi \left[\frac{1}{2} \frac{\alpha_{E1}}{\vec{E}^2} + \frac{1}{2} \frac{\beta_{M1}}{\vec{H}^2} \right]$$

Скалярные поляризуемости

Proton Electric Polarizability

Proton Magnetic Polarizability

Proton between charged parallel plates: $d_{ind} = 4\pi\alpha E$ $\alpha = 12 \pm 0.6 \cdot 10^{-4} \text{ fm}^3$ Proton between poles of a magnet: $m_{ind} = 4\pi\beta B$ $\beta = 1.9 \pm 0.5 \cdot 10^{-4} \text{ fm}^3$

Гамильтониан комптоновского рассеяния (разложение по энергии налетающего фотона)

Third Order - Spin Polarisabilities

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{\text{E1E1}} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{\text{M1M1}} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{\text{M1E2}} E_{ij} \sigma_i H_j + \gamma_{\text{E1M2}} H_{ij} \sigma_i E_j \right]$$

Индексы соответствуют комбинациям мультипольностей налетающего и рассеянного фотонов

- These parameters describe the response of the proton spin to an applied electric or magnetic field. Analogous to a classical Faraday effect.
- To date, these have not been individually determined. However, two linear combinations of them have been.

Спиновые поляризуемости «вперед» и «назад»

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1M1}$$
$$\gamma_\pi = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1}$$

Forward Spin Polarisability: %

Determined from data taken for a measurement of the GDH sum rule

$$\gamma_0 = (-1.0 \pm 0.08) \times 10^{-4} \, \text{fm}^4$$

J. Ahrens et al., *Phys. Rev. Lett.* 87, 022003 (2001) H. Dutz et al., *Phys. Rev. Lett.* 91, 192001 (2003)

Backward Spin Polarisability: γ_{π}

Determined using a dispersive fitting to backward angle Compton scattering data such as that taken at MAMI.

$$\gamma_{\pi} = (8.0 \pm 1.8) \times 10^{-4} \, \mathrm{fm}^4$$

M. Camen, et al., Phys. Rev. C 65 032202 (2002)

Спиновые поляризуемости протона - Теория

Измерение спиновых поляризуемостей – важный тест теорий нуклонной структуры

γ	ChPT1	ChPT2	K-matrix	Lχ	XEFT	DR1	DR2	DR3
E1E1	-5.4	-1.3	-4.8	-3.7	-1.1	-3.4	-4.3	-3.8
M1M1	1.4	3.3	3.5	2.5	2.2	2.7	2.9	2.9
E1M2	1.0	0.2	1.8	1.2	-0.4	0.3	-0.02	0.5
M1E2	1.0	1.8	1.1	1.2	1.9	1.9	2.2	1.6
0	1.9	-3.9	2.0	-1.2	-2.6	-1.5	-0.8	-1.1
π	6.8	6.1	11.2	6.1	5.6	7.8	9.4	7.8

Расчетные значения спиновых поляризуемостей (в единицах 10⁻⁴ fm⁴): ChPT – киральная теория возмущений, L_χ – киральный лагранжиан, <u>XEFT</u> – киральная теория эффективного поля, DR – дисперсионные соотношения.

Спиновые поляризуемости протона - Измерение

Комптоновское рассеяние с поляризационными степенями свободы (3 асимметрии):

Circularly polarised photons, transversely polarised protons.

 $\Sigma_{2x} = \frac{N_{+x}^R - N_{+x}^L}{N_{-x}^R + N_{-x}^L}$

Спиновые поляризуемости протона - Измерение

Комптоновское рассеяние с поляризационными степенями свободы (3 асимметрии):

Circularly polarised photons, transversely polarised protons.

 $\Sigma_{2x} = \frac{N_{+x}^R - N_{+x}^L}{N_{+x}^R + N_{+x}^L}$

Спиновые поляризуемости протона - Измерение

Комптоновское рассеяние с поляризационными степенями свободы (3 асимметрии):

• Circularly polarised photons, transversely polarised protons.

· Circularly polarised photons, longitudinally polarised protons.

Коллаборацией А2 измерены асимметрии комптоновского рассеяния на протоне в области Δ(1232)-резонанса:

- Σ_{2x} (циркулярно пол. пучок, поперечно пол. мишень):
 550 часов измерений (сентябрь 2010 & февраль 2011)
- Σ_{2z} (циркулярно пол. пучок, продольно пол. мишень):
 600 часов измерений (апрель май 2014)
- Σ₃ (линейно пол. пучок, жидководородная мишень):
 500 часов измерений (декабрь 2012, май июнь 2013)

Система мечения фотонов по энергии (Glasgow, Mainz)

Primary Beam, Detection of radiating electrons:

$$\rightarrow$$
 $E_{\gamma} = E_{0} - E_{e}'$

- Tagged range: 4.7 93% E₀
- Energy resolution ~1 4 MeV
- Circularly pol. γ from e⁻ pol, upto 85%
- Linearly pol. γ from crystal. rad., upto 70%
- 1 MHz / channel e- rate
- EPJ A 37, 129 (2008)

Неполяризованная протонная мишень

10 cm liquid hydrogen target

Поляризованная мишень (Дубна, Москва, Mainz)

Поляризованная мишень (Дубна, Москва, Mainz)

General view of the target in the experimental hall

DNP to achieve ~90% proton,
 ~80% deuteron polarization
 Relaxation time >2000 hours

Polarization reversed approximately once per week to remove systematic errors

Вычитание фона от криостата

Для вычитания фоновых событий от криостата и от неводородных нуклонов в бутаноловой мишени и гелиевой ванне был выполнен отдельный эксперимент с углеродной мишенью. Ее плотность была подобрана таким образом, чтобы число нуклонов в углеродной мишени равнялось числу неводородных нуклонов в мишени из бутанола.

Butanol beads → carbon foam
 N_{nucleii} = 12N_C + 16N_O + 4N_{He4} + 3N_{He3}
 Simultaneously subtracts empty target

- Регистрация продуктов реакции осуществляется детектирующей системой на основе детекторов Crystal Ball (центральный детектор) и TAPS (передний детектор), которые совместно перекрывают телесный угол около 97% от 4 π.
- Мишень располагается внутри апертуры детектора Crystal Ball .

4π спектрометр

Crystal Ball: 672 NaI detectors Max. kin. energy: μ^{+-} : 233MeV π^{+-} : 240 MeV K^{+-}: 341 MeV P: 425 MeV

Vertex detector: 2 Cylindr. MWPCs 480 wires, 320stripes PID detector: 24 thin plastic detectors

Элементы 4 пс спектрометра

Фоны от фоторождения π^0 -мезонов

Compton Scattering

If one of the decay photons is lost, this can look like Compton

Фоны от рождения π^0

 π^0 фотон вылетает через центральное отверстие TAPS

π⁰ фотон вылетает через заднюю апертуру СВ

π⁰ фотон вылетает через щель между CB & TAPS

Фоны от рождения π^0

Рассчитаны спектры недостающей массы для фоновых событий от рождения π^0 -мезонов

$$M_{\rm miss} = [(E_{\gamma i} + m_p - E_{\gamma f})^2 - (p_{\gamma i} - p_{\gamma f})^2]^{1/2}$$

Фотон, регистрируемый под θ_{adj} , игнорировался, а второй фотон рассматривался как комптоновский фотон. В эти спектры вводилась поправка, учитывающая то обстоятельство, что $\theta adj \neq \theta$.

Missing Mass - 270-310 MeV, 100-120 deg

Г.М.Гуревич, Измерение спиновых поляризуемостей

1200

1200

Missing Mass - 270-310 MeV, 100-120 deg

Асимметрия Σ_{2x} (циркулярно поляризованные фотоны, поперечно поляризованная мишень)

Для данной энергии налетающего фотона *E*, полярного угла комптоновского рассеяния θ , и азимутального угла Φ относительно направления поляризации мишени асимметрия Σ_{2x} :

$$\Sigma_{2x}(E,\theta)\cos(\phi) = \frac{1}{P_T P_{\gamma}(E)} \left[\frac{N^R(E,\theta,\phi) - N^L(E,\theta,\phi)}{N^R(E,\theta,\phi) + N^L(E,\theta,\phi)} \right],$$

P_T – поляризация мишени, *P_γ* – поляризация пучка, *N^R* (*N^L*) – число событий, соответствующих правой (левой) циркулярной поляризации пучка.

Асимметрия Σ_{2x} (теория и эксперимент)

FIG. 3. Σ_{2x} for $E_{\gamma} = 273 - 303$ MeV (color online). The curves are from a dispersion theory calculation [11] with α , β , γ_0 , and γ_{π} held fixed at their experimental values, and γ_{M1M1} fixed at 2.9. The green, blue, brown, red and magenta bands are for γ_{E1E1} equal to -6.3, -5.3, -4.3, -3.3, and -2.3, respectively. The width of each band represents the propagated errors from α , β , γ_0 , and γ_{π} combined in quadrature.

Асимметрия Σ_{2x} (теория и эксперимент)

Vary γ_{M1M1} , holding γ_{E1E1} fixed.

Асимметрия Σ_{2z} (теория и эксперимент)

Vary γ_{E1E1} , holding γ_{M1M1} fixed.

Асимметрия Σ_{2z} (теория и эксперимент)

Vary γ_{M1M1} , holding γ_{E1E1} fixed.

Асимметрия Σ₃ (теория и эксперимент)

Г.М.Гуревич, Измерение спиновых поляризуемостей

Извлечение спиновых поляризуемостей

В принципе, относительно простой анализ двух измеренных экспериментальных асимметрий комптоновского рассеяния, например, Σ_{2x} и Σ₃ (с использованием известных значений γ₀, γπ и скалярных поляризуемостей α и β) позволяет извлечь четыре спиновые поляризуемости, правда в этом случае

результаты будут содержать модельно-зависящие ошибки.

Если же измерить все три асимметрии при разных энергиях и углах рассеяния, станет возможным выполнить глобальный анализ и извлечь все четыре спиновые поляризуемости независимо с малыми статистическими, систематическими и модельными ошибками.

Спиновые поляризуемости (Теория и Эксперимент)

γ	ChPT1	ChPT2	K-matrix	Lχ	χeft	DR1	DR2	DR3	Experiment
E1E1	-5.4	-1.3	-4.8	-3.7	-1.1	-3.4	-4.3	-3.8	-3.5 ± 1.2
M1M1	1.4	3.3	3.5	2.5	2.2	2.7	2.9	2.9	$\textbf{3.16} \pm \textbf{0.85}$
E1M2	1.0	0.2	1.8	1.2	-0.4	0.3	-0.02	0.5	-0.7 ± 1.2
M1E2	1.0	1.8	1.1	1.2	1.9	1.9	2.2	1.6	$\boldsymbol{1.99 \pm 0.29}$
0	1.9	-3.9	2.0	-1.2	-2.6	-1.5	-0.8	-1.1	$\textbf{-1.0} \pm \textbf{0.08}$
π	6.8	6.1	11.2	6.1	5.6	7.8	9.4	7.8	$\textbf{8.0} \pm \textbf{1.8}$

Экспериментальные величины спиновых поляризуемостей получены в результате комбинированного анализа асимметрий Σ_{2x} и Σ₃ с использованием расчета по дисперсионной модели, опубликовано Phys. Rev. Let. 114, 112501 (2015)

Заключение

- Измерены три асимметрии комптоновского рассеяния на протоне $\Sigma_{2x}, \Sigma_{2z}, \Sigma_{3}$ в области $\Delta(1232)$ резонанса
- Из анализа данных для двух асимметрий Σ_{2x} и Σ₃ получены значения всех четырех спиновых поляризуемостей протона, опубликовано
- Σ_{2z} данные в процессе калибровки и анализа

Ближайшие планы:

- Выполнить комбинированный анализ данных для 3 измеренных асимметрий
- Это позволит осуществить тестирование теоретических моделей

Перспективы:

- Измерения ниже порога рождения π⁰- мезона– получение спиновых поляризуемостей наиболее модельно-независимым образом
- Требуется детектировать протоны отдачи с низким порогом регистрации
- Решение: Активная (сцинтилляционная) поляризованная мишень
- R&D in progress

Спасибо за внимание!

Backup

Активная поляризованная мишень

