

Baryonic Matter at Nuclotron: status and physics program

M.Kapishin (JINR, Dubna)

JINR (Dubna), IHEP (Protvino), INR RAS (Troitsk), ITEP (Moscow), SINR MSU

WUT (Warsaw), Goethe Uni (Frankfurt), MoU with GSI (Darmstadt)

Complex NICA

Parameters of Nuclotron for BM@N experiment: E_{beam} = 1-6 GeV/u; *beams: from* p to Au; Intensity~10⁷ c⁻¹ (Au)

Heavy Ion Collision experiments

M.Kapishin

Explore high density baryonic matter

Nuclotron is well suited to study in high density (dominantly baryonic) matter

Heavy Ion Collision experiments

BM@N: √s_{NN}=2.3 - 3.5 GeV

Nuclotron

I. In A+A collisions at Nuclotron energies:

Opening thresholds for strange and multistrange hyperon production

strangeness at threshold

Need more precise data for $M_{\rm K}/<A_{\rm part}>$ strange mesons and hyperons, multi-variable distributions, unexplored energy range

hadron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

M.Kapishin

BM@N experiment

 10^{-3}

10-4

10-5

10⁻⁶

-0.4

EC+C Ni+Ni

🗖 🔿 K*

K-

Ô

-0.2

NN

K+

K-

0.2

Ъ

0.0 $\sqrt{s} - \sqrt{s_{th}}$ (GeV)

Questions from HADES experiment

Excess of φ and Ξ production in heavy ion collisions

Large multiplicity of Strangeonium (ϕ) $\sim \approx 25\%$ of K⁻ due to ϕ decay after freeze-out

 Observed yield in Ar+KCl much above expectation from SHM

24 ± 9

 Σ^+

Ξ

Heavy-ions A+A: Hypernuclei production

□ In heavy-ion reactions: production of hypernuclei through coalescence of \land with light fragments enhanced at high baryon densities

□ Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function)

→BM@N energy range is suited for the search of hypernuclei
M.Kapishin
BM@N experiment

Heavy-ions A+A: Study of the EoS with strangeness

The nuclear dynamics is defined by the EoS (via density dependent NN-interaction)

→ Observables sensitive to EoS: collective flow (v₁,v₂,...) particle ratios

Direct information – proton v₁,v₂ **Alternative information – via strangeness**

□ Experience from SIS and AGS : ratio of K⁺ yield Au+Au/C+C at SIS energies and proton v₁,v₂ favor a soft EoS (somewhat sensitive to the details of models)

→ Density dependence of the EoS can be studied in BM@N by a beam energy scan

Nuclotron and BM@N beam line

M.Kapishin

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N experiment

• Central tracker (GEM+Si) inside analyzing magnet to reconstruct AA interactions

- Outer tracker (DCH, Straw / CPC)
 behind magnet to link central tracks to
 ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

GEM tracker: acceptance / momentum resolution / detection efficiency

Momentum resolution / detection efficiency

GEM tracker: Λ^0 , Ξ^- , ${}^3H_{\Lambda}$ reconstruction

Au+Au, 4.5 AGeV, 2.6M central events

Au+Au, 4.5 AGeV, 900k central events

GEM detectors for central BM@N tracker

Tests of GEM detector 163 x 45 cm²

Set of 5 GEM detectors 66 x 41 cm² prepared for cosmic tests

 for tracking in BM@N recent technical runs with deuteron and carbon beams used 5 detectors 66 x 41 cm² and 2 detectors 163 x 45 cm²

for BM@N run in autumn 2017 plan to produce 4 - 6 more detectors 163
 x 45 cm²

M.Kapishin

BM@N experiment in December 2016

Si detector

ZDC

New detector components: 2 big GEMs, trigger barrel detector, Si detector, ECAL

barre

detector

M.Kapishin

• Focus on tests and commissioning of central tracker inside analyzing magnet \rightarrow 5 GEM detectors 66 x 41cm² + 2 GEM detectors 163 x 45 cm² and 1 plane of Si detector for tracking

Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL

Program:

• Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3 – 0.85 T

• Measure inelastic reactions d (C) + target \rightarrow X with deuteron and carbon beam energies of 3.5 - 4.6 GeV/n on targets CH₂, C, AI, Cu, Pb

GEM detector efficiency in deuteron run

Plane efficiency calculated using reconstructed tracks of beam inclined at different angles

First results on Λ reconstruction with GEM detectors in deuteron beam interactions

d + target $\rightarrow \Lambda + X$

Soft selection

Tight selection

- Need to improve vertex reconstruction \rightarrow forward Silicon detector already implemented
- Need more GEM planes to improve track momentum reconstruction \rightarrow plan to install 4 6 GEM planes in autumn 2017

M.Kapishin

Performance of DCH outer tracker in deuteron run

Development of silicon strip detector

- 2-coordinate Si detector X-X'($\pm 2.5^{\circ}$) with strip pitch of 95/103 µm, full size of 25 x 25 cm², 10240 strips
- Detector combined from 4 sub-detectors arranged around beam, each sub-detector consists of 4 Si modules of 6.3 x 6.3 cm²
- One Si plane in front of GEM tracker was installed and operated in March 2017

M.Kapishin

ToF-400 and ToF-700 based on mRPC

5

ToF system performance in deuteron run

Time resolution between ToF-

700 and ToF-400 chambers

Time resolution between two ToF-400 chambers

Time resolution of ToF-700 chamber ~65 ps

• Time resolution of ToF-400 chamber ~53 ps M.Kapishin BM@N experiment

Trigger detectors: beam counters and barrel detector

Trigger group

SiDet – Silicon Detector

Selection of events with activity in barrel detector: $BD \ge 2$, ≥ 3 or forward detector (with beam hole) FD

Trigger barrel detector in BM@N setup

Trigger group

BD multiplicity in carbon beam interactions

ZDC performance in deuteron beam

ZDC response to deuterons and products of d+CH₂ interactions

M.Kapishin

New ZDC calorimeter for Au+Au

RP resolution Au+Au

LAQGSM GEANT4 simulation

<u>New BM@N ZDC for Au+Au: 43 modules</u> Yellow – CBM modules – 20x20 cm, 27 modules : – NICA MPD modules – 15x15 cm, 16 modules

INR RAS, Troitsk

M.Kapishin

 Table 1. Beam parameters and setup at different stages of the experiment

year	2016	2017 spring	2017 autumn	2019	2020 and later	
beam	$d(\uparrow)$	С	Kr , Ar	Au	Au, p	
max.inter sity, Hz	¹ 0.5M	0.5M	0.5M	$1\mathrm{M}$	10M	
trigger rate, Hz	5k	5k	5k	10k 20)k→50k	
central tracker status	6 GEM half pl.	6 GEM half pl.	10 GEM half pl.	8 GEM full pl.	10 GEMs + Si planes	
experim. status	techn. run	techn. run	techn. run	stage 1 physics	stage 2 physics	

Concluding remarks and next plans

- BM@N technical runs performed in December 2016 and March 2017 with deuteron and carbon beams at energies: T0 = 3.5 4.6 AGeV
- Finally BM@N collected data to check efficiencies of sub-detectors and develop algorithms for event reconstruction and analysis
- Major sub-systems are operational, but are still in limited configurations: GEMs, forward Silicon detector, Outer tracker, ToF, ZDC, trigger, DAQ, slow control, online monitoring

BM@N plans for run in November- December 2017:

 Beams provided by heavy ion source: Ar, Kr, extracted and traced to BM@N setup

BM@N setup: extended GEM tracker (+ 4-6 detectors), forward Silicon detector (+2 planes), extended trigger system, ToF, DAQ configurations, extended Outer tracker (2 new CPC chambers)

BM@N future plans for Au+Au: collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup

NICA schedule

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex									
Lu-20 upgrade									
HI Source									
HI Linac									
Nuclotron									
general development									
extracted channels									
Booster									
Collider									
startup configuration									
design configuration									
BM@N									
l stage									
II stage									
MPD									
solenoid									
TPC, TOF, Ecal (barrel)									
Upgrade: end-caps +ITS									
MPD Hall									
SPD Hall									
HERT Nucletron collider									
for Booster									
for Collider									

running time

NICA collider major parameters

Ring circumference, m	503.04							
heavy ions								
<i>β</i> , m	0.35							
energy range for Au⁷⁹⁺: √S _{NN} , GeV	4 - 11							
<i>r.m.s. ∆p/p, 10⁻³</i>	1.6							
peak Luminosity for Au⁷⁹⁺, cm ⁻² s ⁻¹	1x10 ²⁷							
polarized particles								
max. energy for polarized p , Gev	26							
peak Luminosity for p , cm ⁻² s ⁻¹	1x10 ³²							

MultiPurpose Detector (MPD) NICA

Main target: - study of hot and dense baryonic matter at the energy range of max net baryonic density

V.Kekelidze

MPD Physics objectives

- Bulk properties, EOS
 - particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
 onset of low-mass dilepton enhancement
- Deconfinement (chiral) phase transition at high $\rho_{\rm B}$
 - enhanced strangeness production
 - Chiral Magnetic (Vortical) effect, A polarization
- QCD Critical Point
 - event-by-event fluctuations & correlations
- Y-N interactions in dense nuclear matter
 - hypernuclei

MPD superconducting Solenoid

high level (~ 3x10⁻⁴) of magnetic field homogeneity

Contract with **ASG Superconductor** (Genova, Italy):

- Cold Mass + Cryostat
- Vacuum System
- Trim Coils
- Control System

PS

General responsibility

+ contracts for: yoke; kryo suppl.; movement system; mag. measurement

V.Kekelidze

Yoke production: all packages are at Vitkovice HM

Time Projection Chamber

Leader: S. Movchan

Works are going in accordance with the schedule

TOF Barrel

Leader: V. Golovatyuk

The barrel consist of 12 super-modules (two modules connected together)

active area of TOF barrel number of channels

/	re	a	dc	C	ıt	b	0	a	rd		vi	tł	ָר (st	ri	p	S		
				•		•		•	•	•	÷	•	•	•	•	•	•	•	

V.Kekelidze

MPD FFD : progress in 2016

- TDR OK! Production close to completion
- Tests of the trigger electronics & software at BM@N
- Progress in FE electronics and LV system for FFD

FHCAL: for determination of reaction plane and centrality

- 2-arm (left/right) calorimeter (at ~3.2 m from the IP)
- each arm consists of 45 modules (15x15 cm²).

FHCal coverage: 2.2<|η|< 4.8

Transverse granularity allows to measure: -the reaction plane with the accuracy ~ 20°-30° -the centrality with accuracy below 10%.

modules production – in progress

V.Kekelidze

- Pb+Sc "Shashlyk"
- read-out: WLS fibers + MAPD
- ✤ L ~35 cm (~ 14 X₀)
- Segmentation (4x4 cm²), full azimuthal coverage;
- ✤ E resolution better than 5% @ 1 GeV;
- ✤ time resolution ~500 ps

TDR - in preparation

Agreement between **JINR** and **Tsinghua University** has been signed on: - participation in the MPD experiment; - preparation for mass production of Ecal

projective geometry

MPD Integration : service, cabling

- Final design of internal support structures
- Finalizing TPC, TOF & ECAL assembling plans
- Integration of service systems, cabling, etc..
- Drawing of tooling for (dis)assembling MPD elements and MPD integration

MPD experiment has a potential for competitive research in the field of baryon rich matter

The construction of MPD is progressing close to the schedule

MPD collaboration is growing

Welcome to join the MPD collaboration

Thank you for attention!

M.Kapishin

BM@N Backup slides

M.Kapishin

BM@N beam line

Beam envelopes at the BM@N area

Beam	Planned intensity of Nuclotron + booster (per cycle)
p,d	10 ⁷ at BM@N
¹² C	10 ⁷ at BM@N
⁴⁰ Ar	10 ⁷ at BM@N
¹³¹ Xe	10 ⁷ at BM@N
¹⁹⁷ Au	10 ⁷ at BM@N

Targets: ¹²C,⁶⁴Cu,¹⁹⁷Au, liquid H₂,²H₂

Plans for extensive upgrade of BM@N beam line:

- \rightarrow new stable power supplies for dipole magnets
- \rightarrow stabilization circuits for existing power supplies for quadruples and dipoles
- \rightarrow non destructive beam position monitoring on movable vacuum inserts
- \rightarrow carbon fiber vacuum beam pipe inside BM@N from the target to the end

M.Kapishin

Optimized GEM detector configuration

BMN simulation group

Stations 1 - 4

12 stations: Z = 30 - 45 - 60 - 80 - 100 - 130 - 160 - 190 - 230 - 270 - 315 - 360Stereo angles: 0 - 7.5 deg in stat. 1-4; 0 - 15 deg in stat. 5 - 12 Pitch: 400 um in stat. 1-4, 800 um in stat. 5-12

CBM + BM@N geometry

CBM STS stations: 1+1+2+2

BM@N: STS + GEM

Barroni

CBM + BM(a)N: Track and Λ reconstruction

6

GEM (12 stations)

STS (4 station) +GEM (8 stations)

CPC chamber design

0

Plan to produce and install in autumn 2017 two CPC chambers in front and behind ToF-400 as part of Outer tracker for heavy ion beams

33

Cathode socket

5

MPD backup slides

M.Kapishin

hvnerons

Production of multi-strange hyperons to study the properties of the strongly interacting system and signal for QGP

- Central Au+Au @ 9A GeV (UrQMD), TPC+TOF barrel
- Realistic tracking and PID, secondary vertex reconstruction

Yields for 10 weeks of running

Particle	Λ	$\bar{\Lambda}$	[I]	$\bar{\Xi}^+$	Ω-	$\bar{\Omega}^+$
Expected yield	$5.8 \cdot 10^{9}$	$7.3 \cdot 10^7$	$2.9{\cdot}10^7$	$1.6.10^{6}$	$1.4{\cdot}10^{6}$	$2.9{\cdot}10^{5}$

MPD performance for dileptons

Good probes to indicate medium modifications of spectral functions due to chiral symmetry restoration in A+A collisions; effect is proportional to baryon density

