

Новые методы в экспериментальной ядерной физике и физике частиц

Москва, ФИАН, 18 апреля 2017 г.

Б.А.Чернышев¹, Ю.Б. Гуров^{1,2}, С. В. Лапушкин¹, В. Г. Сандуковский²,

Исследование легких нейтронно-избыточных ядер с помощью многослойного полупроводникового спектрометра

1 – Национальный исследовательский ядерный университет «МИФИ»

2 – Объединенный институт ядерных исследований

Современные регистрирующие комплексы должны одновременно обеспечивать высокую точность корреляционных измерений частиц и ядер с энергиями до нескольких сотен МэВ/нуклон, идентифицировать новые ядерные состояния и измерять их энергетические уровни с разрешением ~ (0,1–1,0) МэВ.

Решение этих задач требует развитие новых экспериментальных методик и создание спектрометрической аппаратуры с соответствующими характеристиками. С точки зрения достижения высокого энергетического разрешения многослойные системы на основе полупроводниковых детекторов (п.п.д.-телескопы) значительно превосходят установки, состоящие из сцинтилляционных и газовых детекторов

Телескопические п.п.д.

```
Кремниевые поверхностно-барьерные детекторы ( Si(Au)-п.п.д.) с толщинами от 10 мкм до 1 мм, предназначенные в основном для идентификации частиц
```

```
Кремниевые литий-дрейфовые
```

```
детекторы (Si(Li) –п.п.д.) с
```

толщинами ~ 3 мм

```
Детекторы из сверхчистого
германия (HPGe -п.п.д.)
```

```
с толщинами 5-10 мм
```

Основные элементы при регистрации длиннопробежных заряженных частиц с энергией Е ~ 100 МэВ/нуклон

НРСе-детекторы

Преимущества – большая толщина чувствительного объема; более высокая тормозная способность.

Недостатки – необходимость охлаждение до температуры жидкого азота.

Si -детекторы

Преимущества – эксплуатация при комнатной температуре; возможность создания многоплечевых установок; возможность изготовления тонких п.п.д. для регистрации ядерных фрагментов и пионов низких энергий.

Телескопические п.п.д.

Результаты технологических разработок: - реализация методов изготовления телескопических детекторов, которые позволили минимизировать их «мертвые» слои; - изготовлен большой набор детекторов из кремния и сверхчистого германия, которые успешно эксплуатировались в течение длительных ускорительных сеансов.

НРСе-п.п.д.

Исследование свойств экзотических легких ядер с большим избытком нейтронов – одно из основных направлений развития современной ядерной физики

8-12 j

<u>Мультинейтронные системы</u>-²n (динейтрон), ³n (тринейтрон), ⁴n (тетранейтрон),...

Сверхтяжелые изотопы водорода-4-6H, 7H

<u>Тяжелые изотопы гелия</u> – ⁵He, ^{6,7}He, ⁸⁻¹⁰He

Тяжелые изотопы лития

<u>Тяжелые изотопы бериллия</u> – ¹¹⁻¹³Ве

Энергии возбуждения $0 \le E_x \le 40$ МэВ

отрицательных пионов

Реакция поглощения остановившихся

перезарядку пионов

Реакции перезарядки, включая

эмиссией быстрых частиц Глубоконеупругие реакции

Реакции передачи Реакции с тяжелыми ионами, сопровождающиеся

Реакции фрагментации бомбардирующего иона

Реакции деления стабилы Реакции фрагментации ядра мишени

Десятые

чтения

Черенковские

1 - Ю.Э.Пенионжкевич, Р.Г.Калпакчиева, Легкие ядра у границы нейтронной стабильности, Дубна - 2016

передачи, квазиделение

Методы синтеза нейтронно-избыточных изотопов легких элементов

- $\pi^- + \mathbf{pp} \rightarrow \mathbf{pn}$
- π + pn (T=0, S=1, l_{pn} =0) \rightarrow nn

Десятые

чтения

Черенковские

Механизмы поглощения остановившихся пионов

 $\pi^- + {}^9\text{Be}, {}^{10,11}\text{B} \rightarrow \text{exotic nuclei} + \text{X}$

Поглощение пионов - инструмент образования нейтронно-избыточных ядерных состояний

Остаточные ядра формирующиеся при поглощении *π*⁻мезонов ядрами

Частицы	p	d	t	³ He	⁴ He
Инклюзив	⁸ He	⁷ He	⁶ He	6H	⁵ H
р	⁷ H	6H	⁵ H	⁵ n	⁴ n
d	6H	⁵ H	⁴ H	⁴ n	³ n
t	⁵ H	${}^{4}\mathrm{H}$	³ H	³ n	² n
³ He	⁵ n	⁴ n	³ n	-	-
⁴ He	⁴ n	³ n	² n	-	-

Частицы	p	d	t	³ He	⁴ He
Инклюзив	¹⁰ Li	⁹ Li	⁸ Li	⁸ He	⁷ He
p	⁹ He	⁸ He	⁷ He	⁷ H	6H
d	⁸ He	⁷ He	⁶ He	6H	⁵ H
t	⁷ He	⁶ He	⁵ He	⁵ H	⁴ H
³ He	⁷ H	⁶ H	⁵ H	⁵ n	⁴ n
⁴ He	⁶ H	⁵ H	⁴ H	⁴ n	³ n

Поглощение пионов - инструмент образования нейтронно-избыточных ядерных состояний Преимущества и недостатки

<u> Преимущества метода :</u>

• Образование остаточных ядер с большим избытком нейтронов N>> Z

• Отсутствие погрешностей, обусловленных энергетическим разрешением и угловой расходимостью пучка

 $E_0 = M_A + m_{\pi} - /B_{\pi}/; \qquad P = 0$

• Большая область исследуемых энергий возбуждений $0 \le E_x \le 40 \text{M}$ эВ

• Возможность исследования широкой области ядер в одном экспериментальном сеансе

Недостатки метода :

•Отсутствие надежных теоретических моделей, которые описывают исследуемую реакцию

• Затруднения в определении квантовых чисел исследуемых состояний

Пример диаграммы Далица

∆Е-Е метод

Структурная схема многослойного п.п.д.-телескопа

Распределение энерговыделений в идентификаторе (ΔE_1) и Si(Li)-п.п.д. (ΔE_2) при регистрации частиц от захвата π^{-9} Be

a - до обработки, по критерию χ² для гипотезы остановки в 1-ом Si(Li)-п.п.д. телескопа
 б - после прохождения процедуры отбраковки

Схема двухплечевого п.п.д.-спектрометра для измерений в ПИЯФ

Десятые

чтения

Черенковские

п.п.д.- телескоп: Si(Au)-п.п.д. с W = 200 мкм, 14 (7) Si(Li)-п.п.д. с W ~ 3 мм (w_{мс} ~ 350 мкм) Е _{p.d.t} - 10 – 100 МэВ

Т1 и Т2 – п.п.д.-телескопы 3 – графитовый замедлитель М – мишень, пластины Ø32 мм, толщиной ~ 100 мкг/см² МД1 и МД2 – мониторные детекторы

Первые наблюдения ⁵Н и ¹⁰Li

Thoennessen M. Discovery of the Isotopes with $Z \le 10$ // Atom. Data and Nucl. Data Tabl. 2012. <u>98</u>. 43.

Амелин А.И. и др. // ЯФ. 1990. Т. 52. 1231.

Схема спектрометра (LANL)

Пучок	Мишень	Размеры и примеси	Скорость остановок, 1/с	ППД- Телескопы	Пороги(МэВ)
Eπ= 30 M ₂ B (Δp/p=±1%)	⁹ Be ^{10,11} B ^{12,14} C	Толщина – 25 мг/см ² , (135µм) диаметр – 26 мм, 23% ¹² С в ¹⁴ С	~ 6.104	2 Si(Au) -T=100, 450µм 14 Si(Li) -T= 3 мм, Wd≈0.1мм S= 8 см ² Ω=55÷15 мстер	$E_{p} \approx 3.5,$ $E_{d} \approx 4,$ $E_{t} \approx 4.5,$ $E_{He} \approx 15.$

•Gornov M. G. et al. // Nucl. Inst. and Meth. in Phys. Res. A 2000. V. 446. P. 461.

Расчетные и экспериментальные значения энергетического разрешения п.п.д.-телескопа (FWHM) и их составляющие

Энергия частицы, МэВ	$E(\mathbf{p}) = 98.5$	$E(\mathbf{d}) =$	E(t) = 84.1
		93.9	
Вклады в ΔE_{pac} , кэВ:			
$\Delta E_{_{ m MMIII}}$	110	230	377
$\Delta E_{\rm MC}$	306	237	200
$\Delta E_{2\pi}$	327	219	183
ΔE_{pac} , кэВ	462	400	466
$\Delta E_{_{ m ЭКС}}$, кэВ	480 ± 25	410 ± 15	480 ± 30

Энергетическое разрешение

Однозарядные частицы

Десятые

чтения

Черенковские

Двухзарядные частицы

δE(p, d, t) ≤ 0.45 M∋B

Разрешение по недостающим массам (ММ)

Однозарядные пары

Десятые

чтения

Черенковские

Однозарядные и двухзаряднные пары

δММ(р, d, t) ≤ 1 МэВ

Спектр возбуждений изотопа ¹⁰Li

Десятые Черенковские чтения

ПИЯФ

Сверхтяжелый изотоп водорода ⁵Н

Thoennessen M. Discovery of the Isotopes with $Z \le 10$ // Atom. Data and Nucl. Data Tabl. 2012. <u>98</u>. 43.

N, отн. ед.

Десятые

Черенковские чтения

Reaction channel				
⁹ Be (π ⁻ , <i>pt</i>) ⁵ H ⁹ Be (π ⁻ , <i>dd</i>) ⁵ H				
E_r , MeV	Γ, MeV	E_r , MeV	Γ, MeV	
5.2(3)	5.5(5)	6.1±0.4	4.5±1.2	
10.4(3)	7.4(6)	11.4±0.7	5±1	
18.7(5)	3.9(2.0)	18.3±0.5	5.5±1.7	
26.8(4)	3.0(1.4)	26.5±1.0	6±3	

Gornov M.G. et al. // Nucl. Phys. A. 1991. <u>531</u>. 613.

 ${}^{9}Be(\pi^{-},pt)X, {}^{9}Be(\pi^{-},dd)X$

¹⁰B(π^- ,p⁴He)X, ¹⁰B(π^- ,d³He)X, ¹¹B(π^- ,d⁴He)X and ¹¹B(π^- ,t³He)X

⁶Li(π⁻,p)X, ⁷Li(π⁻,d)X and ⁹Be(π⁻,⁴He)X

Reaction	E_r , MeV	Γ, MeV	
p (⁶ He, pp) ⁵ H	1.7±0.3	1.9±0.4	RIKEN
t (t, p) ⁵ H	1.8±0.1	≤ 0.5	JINR
	2.7±0.1	≤ 0.5	
t (t, p) ⁵ H	≈1.8	≈1.3	JINR
	~ 5-6		
	~ 5-6		
¹² C (⁶ He, 2nt)X	~3.0	~6.0	GSI

Образование ⁷Не при поглощении

остановившихся пионов

Десятые Черенковские

чтения

E, MeV	Γ, MeV	Наши	Work
x >	,	данные.	
g.s.	-	1), 2), 3)	[1]
0.6(1)	0.75(8)		[2]
0.9(5)	1.0(9)		[3]
≈ 1.45	≈ 2		[4]
≈2.6	≈2	書	[5]
2.9(3)	2.0(3)		[6]
2.92(9)	1.99(17)		[1]
3.1(1)	≤ 0.5	1), 2), 3)	
4.9 (2)	≤ 0.5	1), 2), 3)	
5.8(3)	4(1)		[7]
6.7(2)	≤ 0.5	1), 2)	
≈8.0	~7		[8]
16.9(5)	1.0(3)	2), 3)	
≈18.0	~7		[8]
18.0(1.5)	~10		[9]
19.8(3)	1.5(3)	1), 2), 3)	
20(1)	9(2)		[10]
24.8(4)	4.6(7)	1), 2), 3)	

 E_r (IAS) ~ 3 MeV

Тяжелые изотопы лития ¹⁰⁻¹²Li

Разработан и реализован метод прецизионного измерения энергии заряженных частиц с помощью многослойных п.п.д.- спектрометров на ускорителях. Разработанный подход позволяет измерять энергию частиц в диапазоне от нескольких до сотен МэВ и идентифицировать частицы с различными массами – от пионов до многозарядных ядерных фрагментов.

