Четверть века развития кремниевых детекторов в России - от УНК до NICA

Михаил Меркин НИИЯФ МГУ

Содержание

- Кремниевые детекторы. Немного истории
- Падовые детекторы. Особенности и применение.
- Микростриповые координатночувствительные кремниевые детекторы.

- В 1989 1994 велись активные работы с различными организациями: ГИРЕДМЕТ, ЗТМК, НИИ КП, НИИ МЭ, НИИ ТТ, НИИ МВ
- В 1988 году группой НИИЯФ было выдвинуто предложение о разработке кремний-вольфрамового электромагнитного калориметра для проекта УНК, предложение поддержано, выделены средства.

Начало

Прототип модуля ECAL УНК (1992)

Падовые детекторы.

- В первую очередь хотелось бы упомянуть падовые детекторы для адрон-электронного сепаратора (HES) экспериментальной установки ZEUS (DESY, Гамбург). Исторически это были первые детекторы, которые нашли применение в большом эксперименте и, именно, с этих детекторов было начато массовое производство кремниевых планарных детекторов в России.
- Общее количество детекторов изготовленных в 1992 1996 гг., более 17000.

100 мм пластина с детекторами

Ток утечки детекторов

ФИАН Москва, 17 апреля, 2018,

XI Черенковские чтения

Падовые детекторы.

- Падовые детекторы оказались наиболее простым и надежным прибором определения заряда релятивистского иона, что особенно важно при исследовании состава и энергетического спектра космических лучей.
- Широкое применение падовые детекторы находят в калориметрии большей частью электромагнитной, однако, последние годы все больше внимания начинает уделяться и применению в адронной калориметрии.

Схема испытаний прототипа зарядовой системы НУКЛОН

Зарядовые распределения фрагментов для чувствительного канала

Зарядовые распределения фрагментов для грубого канала

Зарядовые распределения фрагментов 315 ГэВ/Z

а – чувствительный канал; б – грубый канал.; Эксперимент – сплошная линия, GEANT – штриховая

Детектор прототипа ILC (коллаборация CALICE)

		-	10	
				1.1.1

Восстановленная энергия и разрешение калориметра

Координатно-чувствительные кремниевые детекторы

- Микростриповый (микрополосковый) детектор представляет собой значительно более сложный прибор по сравнению с падовым детектором. Если число фотолитографий для изготовления падового детектора обычно 4 или 5, то для микростриповых минимальное число фотолитографий - 7. Двухсторонний до 17.
- Детектор представляет собой множество длинных и узких диодов, сформированных на одной пластине, окруженных общими охранными кольцами и системой подачи смещения.

Структура кремниевого трекера (SMT) эксперимента DO

Внешний вид торцевого диска

ФИАН Москва, 17 апреля, 2018,

Модуль передней части трековой системы

Детекторы торцевых дисков

Параметры детекторов

- Средний общий ток утечки I_{bias} =1.1 мкА или i_{bias} =35 нА/см² при полном обеднении, т.о. τ_0 =1.1мс.
- Напряжение полного обеднения V $_{fd}$ =39 ± 15 В (удельное сопротивление кремния ρ_{n} = 6 \div 13кОм×см)
- Величина сопротивления поликремниевых резисторов $R_{\rm b}{=}1$ МОм \pm 20%.
- Ёмкость переходного конденсатора 13 пФ/см.
- Межстриповая ёмкость и соотношение $C_{is}/C_b = 4.5$.
- Дефектные каналы. Среднее количество текущих конденсаторов составило 1.7 конденсатора на детектор, что составляет ~0.15% от общего числа каналов.

Прецизионный вершинный детектор эксперимента СВД-2

Детекторы эксперимента СВД-2

ФИАН Москва, 17 апреля, 2018,

Детектор SVD-16 на керамической подложке

Элемент вершинного детектора эксперимента СВД-2

BM@N / CBM STS

- Основные детекторы, для восстановления треков с разрешением по импульсу
- 8 (CBM)/4 (BM@N), трековых станции, включающие ~900 (CBM) / ~300 (BM@N) кремниевых детектора
- Быстрая электроника с тепловыделением производит до ~40 / ~ 20 кВт в непосредственной близости от детекторов

View of the CBM-STS detector without thermal enclosure and services

Детекторы экспериментов ВМ@N и CBM - DSDM

Детекторы экспериментов ВМ@N и CBM - DSDM

Современные двухсторонние микростриповые детекторы

Обеспечивают пространственное разрешение не хуже 25 мкм

4 основных размера

Для BM@N часть сенсоров уже изготовлено Фотография прототипов кремниевых детекторов. Показано 4 различных размера.

Модули

Концепция модуля

Состав модуля

32 многослойных сверхтонких кабеля кабель Экранирующий слой

Спейсер 4 шт

Детектор

Микросхемы

считывания 16 шт.

Всего 71 компонент

Углепластковые фермы

Прототипы

ALPIDE Technology

- High-resistivity (> 1k Ω cm) p-type epitaxial layer (18 μ m to 30 μ m) on p-type substrate
- Deep PWELL shielding NWELL allowing PMOS transistors (full CMOS within active area)
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel => low capacitance => large S/N
- Reverse bias can be applied to the substrate to increase the depletion volume around the NWELL collection diode

ALPIDE Chip Floorplan

Layout Features

Collection Diode encoder der Matrix enco **Front End** 26.88 Priorit (detail) Priority μm **Digital Pixel** Section 9.66µm 19.58 µm 29.24 µm Matrix - Pixels and **Priority Encoders** Soldering pads Analog DACs over circuits Periphery 1.208 mm FER SEBER MARTINE (detail) Digital Periphery Sea of gates SRAM blocks Regular pads + Custom blocks 144

Pixel layout

ALPIDE Development

MPD @ NICA

6, 10, 15, 19, 23 ледеров в слое

Спасибо за внимание!