Электророждение мезонов в резонансной области

XVI Черенковские Чтения

НИИЯФ МГУ

Евгений Исупов

New era in electromagnetic nuclear physics

- Electrons and photons are perfect tools to explore the properties of strongly interacting systems.
- In the past ~ 25 years many facilities with high-quality continuous beam and large acceptance detectors were launched.

MAMI Mainz ELSA Bonn GRAAL Grenoble LEPS Osaka JLAB Newport News Insight into the Strong QCD from the Synergy between Experiment, Phenomenology, and Theory

Jefferson Lab (Newport News, VA, USA)

N* Spectrum and Structure in Experiments with CLAS/CLAS12

The experimental program on the studies of N* spectrum and structure in exclusive meson photo-/electroproduction with CLAS/CLAS12 seeks to determine:

- N* spectrum with a focus on the new, so-called "missing" and hybrid resonance search
- γ_vpN* electrocouplings at photon virtualities up to 5.0 GeV² for most of the excited proton states through analyzing major meson electroproduction channels from CLAS data
- extend accessible Q² range up to 12 GeV² from the CLAS12 data and explore N* structure evolution in the transition from the strong and pQCD regimes
- explore the hadron mass emergence by mapping out dynamical quark mass in the transition from almost massless pQCD quark to fully dressed constituent quark

A unique source of information on many facets of strong QCD in generating excited nucleon states with different structural features

Review papers:

- 1. I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
- 2. V.D. Burkert and C.D. Roberts, arXiv:1710.02549 [nucl-ex].
- 3. C.D. Roberts, Few Body Syst. 59, 72 (2018).
- 4. V.I. Mokeev, Few Body Syst. 59, 46 (2018).

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities. Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 dσ/dΩ-CM angular distributions A_b, A_t, A_{bt}-longitudinal beam, target, and beam-target asymmetries P⁰, P' -recoil and transferred polarization of strange baryon Dver 120,000 data points! Almost full coverage of the final hadron phase space
π +n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39 1.1-1.8	0.16-0.36 0.4-1.8 3.0-6.0 0.4-1.0	$d\sigma/d\Omega$ $d\sigma/d\Omega, A_b, A_t, A_{bt}$ $d\sigma/d\Omega$ $d\sigma/d\Omega, A_b$	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ	
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P'	
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'	
π ⁺ π ⁻ p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections	

The measured observables from CLAS are stored in the CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

7

Polarized structure function $\sigma_{LT'}$ from $\pi^0 p$ electroproduction data in the resonance region at $0.4 \, {\rm GeV}^2 < Q^2 < 1.0 \, {\rm GeV}^2$

E. L. Isupov *et al.* (CLAS Collaboration) Phys. Rev. C **105**, L022201 – Published 18 February 2022

- CLAS detector data 12/2002 1/2003
- Beam energy: 2.036 GeV
- Beam polarization: ~ 80%
- Target: Liquid Hydrogen, thickness 2 cm
- Number of triggers: ~ 1.5 billion

0.4 < Q² < 1 GeV² 1.1 < W < 1.8 GeV

Polarized Structure Function $\sigma_{LT'}$ 0.4 < Q² < 0.6 GeV²

9

Legendre Polynomials of $\sigma_{\rm LT'}$

l=0,1,2,3
$$\sigma_{LT}$$
,=D0+D1*x+D2*0.5*(3*x² -1)+D3*0.5*(5*x³ -3*x x = cos(θ)

sensitivity to P13(1720) D1 ~ -Im(... 6*S1p*conj(E1p) - 6*S1p*conj(M1p) ...)

```
sensitivity to D33(1700)
    D1 ~ -Im(... - 6*S2m*conj(E2m) -
6*S2m*conj(M2m)... )
```

LP - effective way to present our data and to demonstrate sensitivity to different excited states of the nucleon

P_{11}	P_{31}	$\frac{1}{2}^+$	1+	L_{1-}
S_{11}	S_{31}	$\frac{1}{2}^{+}$	0-	L_{0+}, E_{0+}
D_{13}	D_{33}	$\frac{1}{2}^{+}$	2^{-}	L_{2-}, E_{2-}
P_{11}	P_{31}	$\frac{1}{2}^{+}$	1+	M_{1-}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1+	M_{1+}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1^{+}	L_{1+}, E_{1+}
F_{15}	F_{35}	$\frac{1}{2}^{+}$	3^{+}	L_{3-}, E_{3-}
D_{13}	D_{33}	$\frac{1}{2}$ ⁺	2^{-}	M_{2-}
D_{15}	D_{35}	$\frac{1}{2}^+$	2^{-}	M_{2+}

Legendre Moments of Polarized Structure Function σ_{LT} , 0.4 < Q² < 0.6 GeV²

Resonance Photocouplings from the CLAS $\pi^+\pi^-p$ Photoproduction Cross Sections

In 2019 partial update of the Review of Particle Physics the entries on photocouplings and N $\pi\pi$ decay widths for many resonances with masses >1.6 GeV were revised based on the studies of $\pi^+\pi^-p$ photoproduction with CLAS. 12

Accessing resonance electrocouplings from the $\pi^+\pi^-p$ differential electroproduction off protons cross sections

Roper Resonance in 2002 & 2019

protons data

V. Burkert, Baryons 2002

Electrocouplings of N(1440)1/2⁺ from N π and $\pi^+\pi^-p$ **Electroproduction off Proton Data**

Consistent results on N(1440)1/2⁺ electrocouplings from the independent studies of two major N π and $\pi^+\pi^-p$ electroproduction off proton channels with different non-resonant contributions strongly support credible extraction of these quantities in a nearly model-independent way.

Electrocouplings of N(1520)3/2⁻ from N π and $\pi^+\pi^-p$ Electroproduction off Proton Data

Consistent results from N π and $\pi^+\pi^-p$ electroproduction off proton data on electrocouplings of N(1440)1/2⁺ and N(1520)3/2⁻ resonances with the biggest combined contribution into the resonant parts of both channels at W<1.55 GeV strongly support the capabilities of the developed reaction models for credible extraction of resonance electrocouplings from independent analyses of both N π and $\pi^+\pi^-p$ electroproduction.

Excited Nucleon States and Insight into Strong QCD Dynamics

From Resonance Electrocouplings to Hadron Mass Generation

DSE analyses of the CLAS data on $\Delta(1232)3/2^+$ electroexcitation demonstrated that dressed quark mass is running with momentum.

Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass function</u> for the ground and excited nucleon states of distinctively different structure validate the DSE results on momentum dependence of dressed quark mass. $\gamma_v pN^*$ electrocoupling data offer access to the strong QCD dynamics underlying the hadron mass generation.

One of the most important achievements in hadron physics of the last decade in synergistic efforts between experimentalists, phenomenologists and theorists.

Dressed Quark Mass Function from Electrocouplings of Radial \Delta-Excitation

Ya Lu et al., PRD 100, 034001 (2019)

Victor Mokeev in preparation

Good description of the CLAS $\pi^{+}\pi^{-}p$ electroproduction off protons data was achieved at 1.4 GeV < W < 2.0 GeV and 2.0 GeV² < Q² < 5.0 GeV² within JM19 model.

- $\Delta(1600)3/2^+$ electrocouplings are preliminary extracted.
- Confirmation of the DSE expectations may prove a relevance of dressed quark with running mass in the structure of $\Delta(1232)3/2^+$ and radial nucleon and Δ excitations.
- Studies of [70,1⁻] orbital excitations is the next step.

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Gothe, Mokeev, Burkert, Cole, Joo, Stoler

E12-06-108A

KY Electroproduction with CLAS12

Carman, Gothe, Mokeev

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for Nπ, Nη, Nππ, KY:

 E_b = 11 GeV, Q² = 3 \rightarrow 12 GeV², W \rightarrow 3.0 GeV with nearly complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N* states in the mass range up to 2.0 GeV vs. Q^2 up to 12 GeV².

CLAS12 is the only facility to map-out the N* quark with minimal meson-baryon cloud contributions.

The experiments already started in February 2018!

$\pi^+\pi^-$ p CLAS12 data analysis

300

250

200

150

100F

0.4 0.6 0.8

all final hadrons are detected

70000

60000

50000

40000

30000

20000 1000

-8.02

-0.015

-0.01

-0.005

0

 $ep \rightarrow ep'\pi^+\pi^-X$

Missing Mass Proton

Missing proton

2.557488e+07

1.794e+05 ± 2.598e+02 0.8889 ± 0.0001

2.718e+04 ± 2.007e+02

1.323e+05 ± 6.059e+02 -4.757e+04 ± 3.396e+02

 M^2_{X} GeV²

 0.07409 ± 0.00013

1.077

0.4958

Entries

Mean Std Dev

Prob

p0

p2

p4

1.2

21

Available data-set: Data on nine independent one-fold

differential cross sections \rightarrow nucleon resonance electroexcitation

Full statistics for RG-K will allow:

• to obtain $\pi^+\pi^-p$ electroproduction cross section within Q²-bins of 0.1 GeV² size

0.005 0.01 0.015 0.02 M^2_X(ep-->e'p'\pathcap +\pi^-X), GeV²

Спасибо за внимание!