RICH-детектор для эксперимента NICA SPD: концепция построения фоточувствительной Digital SiPM-матрицы и интегрированной фронт-энд электроники.

Е.А. Усенко, А.И. Решетин от имени Научной группы ИЯИ РАН участника Международных коллаборации RD-51 (ЦЕРН) и NICA SPD (ОИЯИ).

Вступление.

Предложение основано на R&D прототипа FARICH детектора, проведенное в 2009-2012 г.г. в CERN на тестовом пучке ускорителя PS для апгрейда эксперимента ALICE.

Первая фаза исследований FARICH прототипа в тестовой зоне CERN PS T10.

- Первый прототип светочувствительной матрицы для Черенковского детектора был основан на аналоговых SiPM 1x1mm и состоит их 108 каналов считывания.
- Прототип светочувствительной матрицы состоял из четырех сегментов по 22-а SiPM, расположенных симметрично по кругу, и центральной группы из 20-ти SiPM для триггирования к пучку посредством сцинтиллятора.

Кабельные соединения детектора.

- Интерфейсные печатные платы с цепями поканального смещения для каждого SiPM в группе,
- Считывающая электроника с приведенным ко входу порогом около 1 мВ подключалась через коаксиальные кабели к интерфейсным платам, где осуществлялась емкостная развязка и соединение с группами SiPM по плоскому кабелю.

Электроника считывания и оцифровки.

Использован 128-канальный комплект накамерной электроники, состоящий из:

- 128-канльного усилителя-дискриминатора TOF AddOn, основанного на NINO ASIC,
- многофункционального модуля TRB2 (Trigger Readout Board), содержащего 128-каналов TDC на основе ASIC HPTDC.

Аналоговый модуль TOF AddOn

- модифицирован для работы с SiPM:
- минимальный порог около 0,5mV (50 Ом),
- временной отсчет каждого канала сопровождается амплитудной информаций по ТОТ методу,
- временной и ТОТ отсчеты выполняются в одном канале многохитового TDC,
- настройка режимов работы модуля производится через цифровой протокол SPI из мастер модуля TRB2.

МодульTRB2 (Trigger Readout Board) содержит

- 128 каналов многохитовых TDC 100ps/bin.
- две 32-х разрядные шины для управления TOF AddOn в уровнях TTL & LVDS,
- интерфейсы LAN, Optical Link, JTAG, SPI.
- общий источник питания с TOF AddOn .

The TRB TOF AddOn – 128-Channel TOF TOT FEE

Электроника считывания и оцифровки.

- Модуль TOF AddOn имеет два канала обработки быстрый для получения точного времени и медленный амплитудный с преобразованием заряда во временной интервал по TOT методу.
- ВЦП, работает в многохитовой моде 100ps/bin.

Выводы по итогам первого этапа исследований. Ограничения на количество каналов матрицы аналоговых SiPM.

- 1. Применение аналоговых SiPM ограничивается построением реальных многоканальных матриц с числом каналов 100-500.
- 2. Рост размеров матрицы и числа каналов считывания сопряжен с неизбежным снижением качества детектора:
- Рост паразитной емкости межсоединений,
- Кабели в многоканальной системе займут больше места, чем сам детектор,
- Рассеиваемая мощность накамерной электроники при высокой плотности потребует ее отвода, а также удаления от детектора.
- Даже применение специализированных ASIC-ов не решает проблемы.
- Рассеиваемая мощность самой современной DAQ 300-400 мВт/канал, что при минимальной размерности светочувствительной матрицы 50-70тыс. ячеек составит 15-20 кВт.

Только интеграция электроники на одном кристалле кремния с SiPM позволяет преодолеть проблему. Переход к концепции Digital SiPM.

Digital SiPM от PHILIPS.

Матрица Digital SiPM не является полным прототипом для RICH детектора, но содержит элементы и решения необходимые для постановки задачи на построение матрицы с числом каналов 50-100тыс.

Digital SiPM в отличии от аналогового SiPM оперирует индивидуально с каждой из 3200/6400 ячеек на кристалле размером 3,5x3,5 мм:

- Каждая ячейка содержит усилитель для формирования сигнала до логического уровня, цепи регулировки индивидуального смещения, схему быстрого восстановления ячейки после срабатывания,
- 1-канальный ВЦП подключенный ко всем ячейкам через интеллектуальную сеть OR/AND,
- Котроллер управления и обмена данными.

Digital SiPM от Philips. Цифровая светочувствительная ячейка.

Digital SiPM содержит 3200(59,4х64um²)/6400(59,4х32um²) ячеек, каждая ячейка содержит:

- Пороговый дискриминатор,
- Цепи регулировки обратного смещения,
- Цепи быстрого восстановления ячейки после каждого срабатывания, включая шумовое.
- Статическая память значения обратного смещения.

Активное ограничение и восстановление диодной ячейки Digital SiPM.

Логический импульс на выходе ячейки:

- Использование активных элементов для принудительного ограничения лавины в ячейке,
- Быстрое восстановление/перезарядка ячейки через управление цепью смещения,
- Возможность программного управления/удаления аномальных ячеек,
- Быстрый цифровой сигнал ячейки (элементарная задержка ~30ps, время нарастания фронтов ~90ps),
- Легкое разделение сигналов по номеру фотонов в событии,
- Совмещение времени пролета и координатной информации в одном элементе потенциально формирует новый тип детектора.

Digital SiPM от Philips. Структура считывающей электроники.

Структура считывания ячеек в Digital SiPM:

- Все ячейки соединены через многофункциональную OR/AND логическую сеть к одноканальному TDC (2xTDC, 23ps/bin, 9bit),
- Блок Аккумулятор фиксирует шумовой счет каждой ячейки и может выключать аномально шумящие,
- Контроллер связи осуществляет прием внешних сигналов синхронизации, обмен данными по JTAG, а также передачу цифрового кода, соответствующего времени срабатывания первой сработавшей ячейки.

Digital SiPM от Philips. Стратегия снижения шумов.

Набор темновых (шумовых) счетов всех ячеек на внутреннем счетчике,

Выбор стратегии исключения ячеек,

Возможность исключить шумящую ячейку,

10-кратное снижения общего шума после исключения 10% аномально шумящих ячеек

Совместные с фирмой Philips испытания FARICH Прототипа-2 на пучке релятивистских частиц (PS ALICE T10 канал)

- Использован технологический демонстратор DLD8K 8188 диодов,
- Изолированный бокс с температурой 2-3°С

Какова должна быть структура Digital SiPM в контексте применения в RICH детекторе?

JTAG in data out LVCMOS clock & sync

- Существующая конфигурация не позволяет определять координату внутри чипа 3,5x3,5 мм, хотя содержит 16 СУБПИКСЕЛЕЙ размером 0,875 х 0,9 мм.
- Целесообразно сопровождать временную отметку адресом СУБПИКСЕЛЯ,
- Расширить протокол внешнего обмена до возможности соединения чипов в цепочки и квадранты, что резко снизит энергопотребление накамерной системы сбора данных.

Каковы перспективы разработки Digital SiPM в России?

- 1. Пока есть только опыт разработки и изготовления аналоговых SiPM в небольших количествах.
- 2. Есть противоречивая информация о разработках SiPM в Зеленограде для целей Роскосмоса, в которых невнятно декларируется совмещение цифровой электроники на одном кристалле.
- 3. В Белоруссии начаты работы и получены первые образцы SiPM, созданные по C-MOS 0.36 um технологии, совместимой с требованиями к цифровым SiPM.
- 4. В 2022 году в ООО МИКРОН (Зеленоград) размещен заказ на производство опытной партии специализированной интегральной схемы, прототип NINO ASIC (ALICE CERN), на основе технологии IBM C-MOS 0.18 um.
- Технология совпадает с Digital SiPM,
- Опыт начала работы с МИКРОН покажет возможности технологии и реальные перспективы сотрудничества.

Спасибо за внимание!