Сблучения ядерной эмульсии и твердотельных трековых детекторов релятивистскими и медленными ядрами ксенона

А.А. Зайцев, П.И. Зарубин

Эксперимент БЕККЕРЕЛЬ

В эксперименте БЕККЕРЕЛЬ исследуется кластерная структура легких стабильных и радиоактивных изотопов, ускоренных на ускорительном комплексе Нуклотрон-NICA. По методу инвариантной массы образованных релятивистских фрагментов Не и Н при диссоциации релятивистских ядер идентифицируются нестабильные ядра ⁸Be, ⁹B и возбужденное ядро ¹²C в состоянии Хойла.

В общем случае энергия системы нескольких частиц Q равна $Q = M^* - M$. $M^* -$ инвариантная масса, определяемая суммой всех произведений 4-импульсов $P_{i,k}$ фрагментов $M^{*2} = \sum (P_i \cdot P_k)$. Вычитание массы M — вопрос удобства. 4-импульсы $P_{i,k}$ определяются в приближении сохранения начального импульса на нуклон. Тогда определение Q сводится к определению углов между направлениями вылета осколков.

Корреляция образования ядра ⁸Ве и множественности α-частиц

4

Nα состояния в диссоциации ⁸⁴Kr при 950A МэВ

Облучение ядерной эмульсии ядрами Xe 3.85*A* GeV на выведенном канале Нуклотрона в точке F3 (2022г.)

Облучение ядерной эмульсии ядрами ксенона в фокусе F3

Увеличенное изображение ядерной эмульсии, облученной в пучке ядер Хе на выведенном канале в точке F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона (2022 г.)

Z=54 - 85% Z=1 - 15%

9

Распределение числа входящих треков на ширину слоя эмульсии

Облучение ядерной эмульсии в зоне установки BM@N (2023 г.)

124Хе+54 З.86А ГэВ

Облучение ядерной эмульсии BM@N (2023 г.)

Автоматизированный микроскоп Olympus BX63, установленный в НЭОФТИ ЛФВЭ. Представлен процесс сканирования образца CR39.

Figure 5: Olympus BX63 motorised microscope. 1) microscope camera, 2) lens revolver, 3) motorised stage, 4) microscope control units, 5) controller, 6) touch panel controller.

Click for more

выделена область прохождения пучка.

Увеличенное **CR39**, изображение облученного образца Olympus **BX63.** микроскопа полученное C помощью Представлена процедура автоматического анализа и счета входящих треков («дырок») ядер Хе в плоскость детектора **CR39**, реализованного фирменном В программном обеспечении CellSens Olympus.

Анализ облученного детектора СR39 ядрами Хе на установке BM@N в 2023 г.

right there are the centres of the analysed squares.

Table 3. Estimation of track density by the visual method.

No.	Square side	Total number	Number of	ratio of tracks to	Fluence
Square	[mm]	of dips	tracks	dips	$[mm^{-2}]$
1	0.25	1370	1601	1.16862	25616
2	0.25	1288	1487	1.15450	23792
3	0.25	1110	1250	1.12613	20000
4	0.25	982	1077	1.09674	17232
5	0.25	744	776	1.04301	12416
б	0.25	502	528	1.05179	8448
7	0.5	980	991	1.01122	3964
8	1	772	772	1.00000	772

Пучок имеет эллиптическую форму с

наклоном эллипса около 45°.

Эллипс пучка, внутри которого плотность «дырок» превышает 10³ мм⁻², имеет размеры большой и малой полуосей порядка 16 и 8 мм

соответственно.

Облучение ТТТД на станции СОЧИ (2023 г.)

Режимы облучения:

- СR39. Расфокусированный пучок с флюенсом 1,8*10^{3 частиц}/_{см2} за сброс. Набрано 3 сброса.
- CR39. Расфокусированный пучок с флюенсом 2,8*10^{4 частиц}/_{см2}
 за сброс. Набрано 4 сброса.
- ПЭТФ (Майлар). Расфокусированный пучок с флюенсом
 2,8*10^{4 частиц}/_{см2} за сброс. Набрано 36 сбросов.
- 4. СR39. Сфокусированный пучок с флюенсом ≈10⁶-10^{7 частиц}/_{см2}
 за сброс. Набран 1 сброс.

Станция Облучения Чипов (СОЧИ) Ионы ¹²⁴Хе^{+(27,28)} с энергией 3.2*А* МэВ

Click for more

Облучение ТТТД на станции СОЧИ (2023 г.)

Условия травления:

6M NaOH, T=85°C, t=120 min

Облучение детекторов CR39 в расфокусированном пучке ионов Xe⁺²⁸ на станции СОЧИ (2023 г.)

Облученный образец CR39.

Увеличенные изображения облученного образца CR39 с использованием объективов x4 и x40 крат. Черные окружности представляют собой отдельные следы прошедших ионов Xe через детектор CR39.

 $1 \,\mathrm{mm}$

10 мкм

Облучение CR39 на станции СОЧИ (2023 г.)

ПЭТФ (Майлар)

Условия травления:

6M NaOH, T=85°C, t=10 min (можно меньше)

Анализ образца CR39, облученного в сфокусированном пучке ионов Хе на станции СОЧИ

Xe⁺²⁸ SOCHI Focused Two projections X and Y axes. Bin 0.175x0.105 mm² Total number of ions - 50776

 $S = 10x17 \text{ mm}^2$

1400 1600

20

Спасибо за внимание!

