Амплитудный анализ мюонных и адронных спектров с тонкого сцинтилляционного счетчика на установке ГИПЕРОН-М

А.М.Горин¹, С.В.Евдокимов¹, <u>А.А.Зайцев^{2,3},</u> П.И.Зарубин^{2,3}, В.И.Изучеев¹, Б.В.Полищук¹, К.А.Романишин¹, В.И.Рыкалин¹, С.А.Садовский¹, Ю.В.Харлов¹, А.А.Шангараев¹

> ¹ НИЦ-Курчатовский институт ИФВЭ ²ОИЯИ ³ФИАН

Введение

Сечение реакции μ + ¹²C $\rightarrow \mu$ ' + 3 α принципиально важно для геологических оценок. Традиционно, в качестве источника гелия указывается радиоактивный распад урана, тория и их дочерних радионуклидов, а анализ на присутствия гелия служит поиску их месторождений. Вместе с тем реакция μ + ¹²C $\rightarrow \mu$ ' + 3 α может служить механизмом генерации гелия в месторождениях природного газа на километровых глубинах, куда способны проникать космические мюоны с энергией сотни ГэВ. В связи с этим измерения сечения реакции при различных энергиях мюонов представляет большой интерес.

Первоочередной интерес представляет возможность полностью детектировать короткопробежные α-частицы, рожденные в событиях ядерной фрагментации μ+¹²C→μ'+3α релятивистскими мюонами.

Возможный механизм образования ⁴Не в земной коре

Содержание ⁴Не (по объему):

- в атмосфере – 5.27·10⁻⁴ % - в природном газе – (2 - 16)%

Мировой рынок гелия — 170-190 млн м³/год

Стоимость гелия составляет 30-32 долл./м³ за газ чистотой 99,995 %

в зависимости от глубины в единицах водного эквивалента.

Диаграмма развала ядра ¹²С на три α-частицы под действием релятивистского мюона (векторная доминантность)

В рамках эксперимента БЕККЕРЕЛЬ (becquerel.jinr.ru) был выполнен анализ опытных образцов ядерных эмульсий (ЯЭ), облученных поперечно мюонами при энергии 160 ГэВ [1]. Разнообразие ядерных событий в ЯЭ начинается с одиночных *b* (*black*) - и *g* (*gray*) - следов протонов отдачи, за которыми следуют *b*-тройки. Наиболее вероятным источником последних является развал $^{12}C \rightarrow$ За через уровни от 7.65 до 16 МэВ ниже порога отделения одиночных нуклонов. Статистика более частых За-звезд позволяет оценивать относительные сечения наблюдаемых с ними событий с большей множественностью следов.

Также было проведено облучение партии слоев ядерной эмульсии в мюонном факеле ИФВЭ с энергией мюонов 2.5 ГэВ.

1. D. A. Artemenkov et al., Phys. Atom. Nuclei 78, 579-585 (2015).

События $\mu(160 \ \Gamma \ni B) + {}^{12}C \to 3\alpha + \mu'$ в ядерной эмульсии

- 1. M.V. Kossov, Eur. Phys. J. A 14, 377-392 (2002).
- 2. D. A. Artemenkov et al., Phys. Atom. Nuclei 78, 579–585 (2015).

Ядерная эмульсия была облучена в CERN µ-мезонами с энергией 160 ГэВ. Образцы ЯЭ площадью 9 × 12 см и толщиной около 100 мкм размещались перед мишенью эксперимента COMPASS на расстоянии около 25 см от оси пучка (гало), где интенсивность достигала порядка 10⁶ частиц на см² в цикл. При просмотре двух образцов было найдено 154 звезды, содержавшие только тройки *b* частиц, остановившихся в эмульсии, сопоставленные развалу ядер ¹²С \rightarrow 3 α . Средняя длина пробегов α -частиц составила L = 23.1 \pm 0.6 мкм. Энергия α -частиц оценивалась по модели SRIM аппроксимацией $E_{kin} = -0.677\log(L)+1.746\sqrt{L}-1.638$. Средняя энергия 3 α частиц в событии составила 14.5±0.3 МэВ.

Мотивация измерений

- Анализ слоев ЯЭ, облученных в пучках релятивистских мюонов с энергией 160 ГэВ указал на заметный вклад процессов диссоциации μ + ¹²C → 3α + μ';
- 1. Определение абсолютного сечения непосредственно по потоку поперечно направленных следов релятивистских частиц в ЯЭ и наблюдаемым звездам практически нереализуемо;
- 1. Поэтому предложено проведение специальных измерений 3αдиссоциации ядра ¹²С на активной тонкой углеродосодержащей мишени на установке Гиперон-М ускорительного комплекса У-70.

Установка ГИПЕРОН-М

.

Установка ГИПЕРОН-М

Счетчик *S*₄

Слева: схема экспериментальной установки ГИПЕРОН-М: S1; S2; S4 - пучковые сцинтилляционные счетчики, C_{1-3} - черенковские счетчики, T - мишень, S_A – триггерный сцинтилляционный анти-счетчик, LGD2 - черенковский электромагнитный спектрометр с радиаторами из свинцового стекла; справа: счетчик S_4 .

Счетчик S_4 изготовлен на основе специального КС ФЭУ со щелевым фотокатодом разработки ИФВЭ и круглого сцинтиллятора (полистирол) диаметром 120 мм и толщиной 0.5 мм. Свет от прохождения частиц собирался воздушным световодом трапециевидной формы. Поверхность световода оклеена изнутри майларом с коэффициентом отражения не менее 80%. Сцинтиллятор подвешен внутри световода на трех нитках.

Измерения амплитудных сигналов с тонкого сцинтилляционного счетчика S4 проводились в пучке заряженных частиц с импульсом 7 ГэВ/с, в состав которого входят $\pi^+(67\%), p(30\%)$ и К+(3%), а также незначительная примесь ядер дейтерия и мюонов. На рисунке представлен спектр амплитуд ~1 млн. адронных событий, набранных по триггеру trig = S1*S2*S3. Красной линией показан фит спектра экспоненциальной функцией в области амплитуд [500, 4000] в отсчетах АЦП.

Спектр со счетчика S4 при прохождении пучка адронов.

Для набора данных со счетчика S4 с существенно уменьшенным вкладом адронной компоненты пучок был пропущен через латунный поглотитель (закрытый коллиматор) толщиной по пучку 75см ($\approx 5\lambda_{\rm h}$). На рисунке представлен амплитудный спектр со счетчика S4 при прохождении такого пучка на статистике ~1 млн событий с тем же триггером (*trig* = S1*S2*S3). Красная фит линия спектра экспоненциальной функцией в области амплитуд [500, 4000] как И на предыдущем рисунке.

Амплитудный спектр событий со счетчика S4, отобранных при одном перекрытом латунном поглотителе.

11

На рисунке представлен амплитудный спектр со счетчика S4 при прохождении пучка через 2 латунных поглотителя (≈10_λ) на статистике ~40 тыс. событий, отобранных тем же триггером. В этом случае можно утверждать практически о полном подавлении адронной компоненты пучка и преобладании в пучке мюонов.

Амплитудный спектр событий со счетчика S4, отобранных при перекрытии двух латунных поглотителей.

На рисунке представлены нормированные спектры амплитуд при прохождении пучка через один и два латунных поглотителя, а также без поглотителей. Можно отметить, что формы амплитудных распределений хорошо согласуются в области до 2800 отсчетов АЦП. При больших значениях амплитуд наблюдается уже нерегулярность спектров.

Нормированные спектры со счетчика S4 при прохождении пучка без перекрытия, через один и два перекрытых латунных поглотителя.

Анализ облученных ядерных эмульсий в пучке адронов на установке Гиперон-М при 7 ГэВ/с

Изображение упаковок экспериментальных образцов ядерной эмульсии. На каждой упаковке указан интегральный поток частиц, прошедший через счетчик, установленный за эмульсионной упаковкой. В каждой упаковке было по 10 пластин 9 х 12 см², толщина чувствительного эмульсионного слоя которых в одной пачке 200 мкм, в двух других по 100 мкм каждая. При экспозиции плоскость сборки из пластинок была ориентирована перпендикулярно направлению пучка.

Просмотр	3α	4α	5α	<5α	Большие звезды	Всего звёзд	Число звёзд Зα на квадрат	Число всех звёзд на квадрат
Просмотрено 3760 квадратов площадью 1х1мм ²	105	33	47	21	238	973	0.02	0.26

Сканирование облученных пластинок ядерных эмульсий проводился с помощью ручного микроскопа МБИ-9 методом просмотра по полосам по всему чувствительному объему. Было проанализировано 3 пластинки с суммарным объемом 3760 мм² х 200 мкм. Было найдено 973 ядерные звезды, среди которых с образованием 5α (47), 4α (33), 3α (105).

Наблюдение *h*+¹²С→3α событий в ядерной эмульсии

Наблюдение *h*+¹²С→3α событий в ядерной эмульсии

Наблюдение *h*+¹²С→*fragments* событий в ядерной эмульсии

Protvino2018hadrons bigstars x60

Оценка сечения 3а диссоциации ядер ¹²С под действием адронов в ядерной эмульсии

- Облучение. Облучение пластинок ядерной эмульсии проводилось на установке Гиперон-М в 2018 году.
 Интегральный поток заряженных частиц, прошедший через счетчик 10x10 см² расположенный за пластинками ядерной эмульсии, составил 10⁷ частиц.
- 2. Статистика. В просмотренных пластинках ядерной эмульсии, размером 9х12 см², было найдено 105 событий, с образованием 3 треков b частиц. Такие события интерпретировались как диссоциация ядер ¹²С на 3 α-частицы в адронном пучке.
- **3. Концентрация углерода.** Покомпонентный состав ядерной эмульсии приведен на сайте: http://becquerel.jinr.ru/text/books/Powell_F.pdf (Таблица 3, стр. 40). В частности приведена концентрация атомов углерода при влажности 58%, равная **1.39·10²² атомов/см³**.
- **4.** Просмотр. Сканирование эмульсии велось методом просмотра по квадратам и всей толщине слоя эмульсии. Площадь квадрата составляет **1 мм**², а толщина эмульсионного слоя **200 мкм**. Всего было просмотрено **3670 квадратов**.

Оценка сечения 3a диссоциации ядер ¹²С под действием адронов в ядерной эмульсии

- 1. Статистика найденный событий 3α -диссоциации ядер ¹²C: $N_{coo} = 105$ событий;
- 2. Объем просмотра: $S_{просмотра} = 37.6 \text{ см}^2$ при толщине эмульсии $t_{_{3M}} = 0.02 \text{ см};$
- 3. Поток частиц, прошедший через счетчик площадью $S_{counter}$ =100 см² составил j_{tot} = 10⁷ частиц, или j_h = 10⁵ частиц см⁻²;
- 4. Число атомов углерода в ядерной эмульсии $N_c = 1.39 \ 10^{22} \ a$ томов см⁻³.

$$\sigma = rac{N_{
m co6}}{N \cdot j \cdot S_{
m просмотра} \cdot t_{
m эм}} =$$

$$rac{105 \,
m co6 ытий}{1.39 \cdot 10^{22}}
m aтомов \cdot
m cm^{-3} \cdot 10^5 \,
m частиц \cdot
m cm^{-2} \cdot 37.6
m cm^2 \cdot 0.02
m cm} =$$

$$100 \pm 10 \,
m m6$$

Амплитудные спектры со счетчика S4 на пучке ГИПЕРОН-М на статистике 2·10⁷событий

Амплитудный спектр со счетчика S4 в адронном пучке, набранный во время сеанса в 2021 г.

оценки вклада событий 3α Для ¹²С под действием диссоциации ядер адронов были проанализированы амплитудные спектры со счетчика S4 на статистике статистика 200 млн событий. Значение средней величины энерговыделения в исследуемой реакции составляет 14.5 МэВ, что соответствует амплитудам ≈ 3625 отсчетов АЦП. Однако необходимо учитывать эффект гашения при большой сцинтилляционного света Коэффициент ионизации. плотности гашения дается законом Биркса:

$$Q_i(E) = \frac{L_i(E)}{L_e(E)} = \frac{L_i(E)/E}{L_e(E)/E} \simeq \frac{dL_i/dE}{dL_e/dE} \simeq \frac{1}{kB(dE/dr)_i}$$

где kB – коэффициент Биркса для данного вещества, $(dE/dr)_i$ – тормозная способность частицы в этом веществе. Для полистирола коэффициент Биркса kB = $9.0 \cdot 10^{-3}$ г MэB⁻¹ см⁻², а тормозная способность α-частицы (5 MэB) в полистироле $(dE/dr)_i$ = $8.75 \cdot 10^2$ MэB см² г⁻¹. Таким образом коэффициент гашения амплитуд α-частиц в полистироле равен Q_α(E) = 0.127. Ожидаемый сигнал от 3α диссоциации лежит в области амплитуд 460±80 отсчетов АЦП.

Полученный спектр амплитуд был профитирован функцией f(x), включающей в себя описание ионизационные потери заряженных частиц и функцию Гаусса, с параметрами, извлеченными при анализе 3α диссоциации ядер ¹²С в ядерных фотоэмульсиях:

$$f(x) = C + \exp(P_n(x)) + A \exp(-\frac{(x - x_{3\alpha})^2}{2s_{3\alpha}^2}),$$

где С – константа, $P_n(x) = \sum_{k=-n}^{n} p_k x^k$ - многочлен Лорана, А – нормировка распределения Гаусса, $x_{3\alpha}$ – среднее значение амплитуды З α диссоциации и $s_{3\alpha}$ – среднеквадратичное отклонение относительно среднего.

Фитирование проводилось в два этапа. На первом этапе фит строился без учета 3-го члена функции f(x), а варьировались константа и коэффициенты многочлена Лорана, используя метод максимума правдоподобия. Установлено, что для хорошего описания спектров достаточного ораничиться порядком многочлена Лорана n=3.

На втором этапе фитирования был включен третий член функции f(x) с двумя фитируемыми параметрами A и x_{3α}. В качестве среднеквадратичного отклонения s_{3α} использовалась величина:

$$s_{3\alpha} = \sqrt{(\kappa \, x_{3\alpha})^2 + \delta^2(x_{3\alpha})},$$

где k = 0.231 – отношение RMS к среднему значению энергии, извлеченных из анализа ядерных эмульсий, $\delta(x_{3\alpha})$ – аппаратурное разрешение счетчика S4 по амплитуде.

В спектрах с уровнем достоверности от 5 до 10 ст. отклонений по параметру А определялся вклад распределений Гаусса, описывающих 3α события. На рисунке такой вклад изображен пунктирной линией.

Результаты фитирования спектров со счетчика S4 в адронном пучке

В Таблице 1 представлены параметры фитирования функцией f(x) спектров адронов, пионов и протонов, где $N_{3\alpha}$ – число идентифицированных 3α-событий, $E_{3\alpha}$ – средняя энергия 3α-систем и $\sigma_{3\alpha}$ – сечение реакции. В Таблице 2 приведены физические параметры со статистическими и систематическими ошибками.

Таблица 1

		2021 г.		2022 г.		
	h^+ -пучок	π^+ -пучок	<i>р</i> -пучок	h^+ -пучок	π^+ -пучок	<i>р</i> -пучок
A	128.7 ± 16.1	92.2 ± 16.2	31.1 ± 5.4	75.1 ± 4.5	52.9 ± 17.3	14.8 ± 2.8
x_{3lpha}	404.9 ± 16.9	371.6 ± 18.7	467.5 ± 26.1	445.2 ± 9.5	437.6 ± 17.3	479.2 ± 28.0
$N_{3\alpha}$, тыс.	18.1 ± 2.4	12.2 ± 2.2	5.0 ± 0.9	12.1 ± 1.2	8.4 ± 1.0	2.5 ± 0.5
$E_{3\alpha}, M$ эВ	11.3 ± 1.8	10.5 ± 0.5	13.2 ± 0.7	13.3 ± 0.3	13.1 ± 0.5	14.3 ± 0.8
$\sigma_{3lpha},~$ мб	62.0 ± 8.2	61.7 ± 11.3	62.0 ± 11.3	95.5 ± 9.3	88.4 ± 10.8	97.2 ± 19.4

Таблица 2

	<i>h</i> ⁺ -пучок	π^+ -пучок	р-пучок
$E_{3\alpha}, M$ эВ	$13.2 \pm 0.3_{st} \pm 0.3_{sys}$	$11.8 \pm 0.4_{st} \pm 0.3_{sys}$	$13.7 \pm 0.5_{st} \pm 0.3_{sys}$
$\sigma_{3lpha},~$ мб	$76.6 \pm 6.2_{st} \pm 4.8_{sys}$	$75.7 \pm 7.8_{st} \pm 3.4_{sys}$	$70.9 \pm 9.8_{st} \pm 2.4_{sys}$

Заключение

- Проанализирован экспериментальный материал при прохождении заряженных частиц с импульсом 7 ГэВ/с через тонкий сцинтилляционный счетчик S4 установки ГИПЕРОН-М на ускорителе У-70.
- Показано, что форма амплитудных спектров в области ионизационных потерь до 10 МэВ практически не зависит от типа проходящих заряженных частиц.
- В рамках эмульсионной методики проведено измерение энерговыделения 3α-систем в реакции μ + ¹²C → 3α + μ', среднее значение равно 14.5±0.3 МэВ.
- В рамках эмульсионной методики получено сечение реакции $h^+ + {}^{12}C \rightarrow 3\alpha + h^+$ при импульсе 7 ГэВ/с, равное 100 ± 10 мб.
- На статистике 200 млн заряженных частиц, прошедших через тонкий сцинтилляционный счетчик получена оценка сечения процесса 3α-диссоциации ядра ¹²С при импульсе 7 ГэВ/с равная 74 ± 9 мб, что согласуется с сечением, полученным в рамках эмульсионной методики.
- Указанные выше сечения процесса 3α-диссоциации ядра ¹²С в пучке заряженных частиц можно рассматривать как первую оценку процесса 3α-диссоциации ядра ¹²С в мюонном пучке при 7 ГэВ/с.

Данная работа выполнена за счет гранта Российского научного фонда No 22-12-00095, https://rscf.ru/project/22-12-00095/

Благодарю за внимание!