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Relation between the dipole polarizabilities of charged and neutral pions

L.V. Fil’kov∗

Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991, Russia

Using the fact that the contribution of the states with isospin I = 0 in the difference of the
amplitudes of the processes γγ → π+π− and γγ → π0π0 is very small, we have analyzed the
dispersion sum rules for the difference between the dipole polarizabilities of the charged and neutral
pions as a function of the σ meson parameters. Then taken into account the current perturbation
value of (α1 − β1)π0 = −1.9, we have found (α1 − β1)π± = 9.4 ÷ 8.2 for values of the σ meson
parameter within the region: mσ = 400 ÷ 550 MeV, Γσ = 400 ÷ 600, Γσ→γγ = 0 ÷ 3 keV. It has
been shown that the value of the decay width of the h1(1170) meson into γπ0 can be found if the
difference (α1 − β1)π± is reliably determined from the experiment. Estimation of the optimal value
of the decay width σ → γγ has given Γσ→γγ

<∼ 0.7keV.
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I. INTRODUCTION

Pion polarizabilities are the fundamental structure pa-
rameters characterizing the behavior of the pion in an ex-
ternal electromagnetic field. Dipole polarizabilities arise
as O(ν1ν2) terms in the expansion of the non-Born am-
plitudes of Compton scattering in powers of the initial
and final photon energies ν1 and ν2. In terms of the
electric α1 and magnetic β1 dipole polarizabilities, the
corresponding effective interaction has the form:

H
(2)
eff = −1

2
4π (α1

~E2 + β1
~H2). (1)

The dipole polarizabilities measure the response of
the hadron to quasistatic electric and magnetic fields.
In what follows, these parameters are given in units
10−4fm3.
The values of the pion polarizabilities are very sensitive

to the predictions of different theoretical models. There-
fore, an accurate experimental determination of them is
very important for testing the validity of such models.
At present, the value of the difference of the charged

pion dipole polarizabilities found from radiative π+

meson photoproduction from protons [1] is equal to
11.6 ± 1.5stat ± 3.0syst ± 0.5mod and close to the value
obtained from scattering of high energy π− mesons off
the Coulomb field of heavy nuclei in Serpukhov [2] and
equal to 13.6± 2.8 ± 2.4. On the other hand, these val-
ues differ from the prediction of the chiral perturbation
theory (ChPT) ((4.7 ÷ 6.7) [3]). The experiment of the
Lebedev Physical Institute on radiative pion photopro-
duction from protons [4] has given α1π+ = 20± 12. This
value has large error bars but nevertheless shows a large
discrepancy with regard to the ChPT predictions, as well.
The preliminary result of the COMPASS collaboration

(α1 − β1)π± = 5.0 ± 3.4stat ± 1.2syst has been found
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by studying the π− meson scattering off the Coulomb
field of heavy nuclei [5]. This result is more close to
the ChPT prediction. However to obtain this result
the authors used very big values of momentum transfer
Q2

max ≈ 5 × 10−3. In this region an interference be-
tween the Coulomb and nuclear amplitudes should be
taken into account [6–8]. It should be noted that the
authors of work [2] chose Q2 < 6 × 10−6 (GeV/c)2 to
guarantee that the contribution of the strong interaction
below the Coulomb peak is negligible.
The charged pion polarizabilities can be also found by

studying the process γγ → π+π−. Investigation of the
process γγ → ππ at low and middle energies was carried
out in the framework of different theoretical models and,
in particular, in the frame of dispersion relations (DR). In
Ref. [9–11] we have analyzed the processes γγ → π0π0

and γγ → π+π− using DRs with subtractions for the
invariant amplitudes M++ and M+− without partial-
wave expansions. The subtraction constants have been
uniquely determined in these works through the pion po-
larizabilities. The values of the polarizabilities have been
found from the fit of the experimental data of the pro-
cesses γγ → π+π− and γγ → π0π0 up to 2500 MeV
and 2250 MeV, respectively. As a result, we have found
(α1 − β1)π± = 13.0+2.6

1.9 and (α1 − β1)π0 = −1.6 ± 2.2.
The result for (α1 −β1)π± is in good agreement with the
values obtained in Ref.[1, 2, 4] whereas it is at variance
with the ChPT prediction.
In the works [12–15] the dipole polarizabilities of

charged pions have been determined from the experimen-
tal data of the process γγ → π+π− in the full energy
region

√
t < 700 MeV, (where t is the square of the total

energy in γγ c.m. system). The results obtained in these
works are close to ChPT predictions [3, 16]. However,
the values of the experimental cross section of the process
γγ → π+π− in this region [17–20] are very ambiguous,
and, as has been shown in Ref. [11, 13], even changes of
these values by more than 100% are still compatible with
the present error bars.
Therefore, it is necessary to consider other additional

possibilities of the (α1 − β1)π± determination.
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Such an information could be obtained from the dis-
persion sum rules (DSR) for these parameters. However,
the main contribution to DSR for (α1 − β1)π± is given
by the σ meson, which is very wide and this causes ad-
ditional uncertainties in the DSR calculation.

On the other hand, if we consider the DSR for the
difference between the charged and neutral meson polar-
izabilities ∆((α1−β1)) = ((α1−β1)π±−(α1−β1)π0), then
the contribution of mesons with isotopic spin I = 0 in
the t channel to this difference would be equal 0 [21, 22],
when the masses of charged and neutral π mesons are
equal each other. As a result, a model dependence for
(α1 − β1)π± should be decreased essentially.

In the present work we investigate DSR for ∆((α1 −
β1)) as a function of the decay width of σ → γγ, when
the masses of the charged and neutral π mesons are not
equal each other. As will be shown, the contribution of
the σ meson is small in this case too, and we can find a
realistic limit on the value of (α1 − β1)π± .

It has been shown that the value of the decay width
of the h1(1170) meson into γπ0 can be found if the value
∆((α1 − β1)) is reliably determined from experiment.

II. DISPERSION SUM RULES FOR THE PION

POLARIZABILITIES

We will consider the helicity amplitudes M++ and
M+−. These amplitudes have no kinematical singular-
ities or zeros [23]. The relations between the amplitudes
γγ → π+π−, γγ → π0π0 and the ones with isotopic spins
I = 0 and I = 2 read

FC =

√

2

3

(

F 0 +
1√
2
F 2

)

,

FN =

√

2

3

(

F 0 −
√
2F 2

)

. (2)

The dipole (α1 and β1) polarizabilities are defined
[10, 24] through expansion of the non-Born helicity am-
plitudes of Compton scattering on the pion in powers of
t at fixed s = µ2

M++(s = µ2, t) = 2πµ(α1 − β1) +O(t),

M+−(s = µ2, t) = 2
π

µ
(α1 + β1) +O(t), (3)

where µ2 is the π meson mass (different for π0 and π±),
t+ s+ u = 2µ2.

The dispersion sum rules for the difference of the dipole
polarizabilities was obtained in Ref. [9] using DRs at
fixed u = µ2 without subtractions for the amplitude
M++. In this case, the Regge-pole model allows the use

of DR without subtractions [23]. Such a DSR is

(α1 − β1) =
1

2π2µ











∞
∫

4µ2

ImM++(t
′, u = µ2) dt′

t′

+

∞
∫

4µ2

ImM++(s
′, u = µ2) ds′

s′ − µ2











. (4)

As is evident from Eq.(2), the contribution of the
isoscalar mesons to the difference ∆((α1 − β1)) equals
0 (if the masses of the charged and neutral pions are
equal). We will study this difference when these masses
do not equal each other.
The DSRs for the charged pions are saturated by

the contributions of the ρ(770), b1(1235), a1(1260),
and a2(1320) mesons in the s-channel and σ, f0(980),
f ı
0(1370) in the t-channel. For the π0 meson the contri-
bution of the ρ, ω(782), φ, h1(1170), and b1(1235) mesons
are considered in the s-channel and the same mesons as
for the charged pions in the t-channel. Besides, we take
into account a nonresonant S-wave contribution of two
charged pions in the t channel.
The parameters of the ρ, ω, φ, b1 and a2 mesons are

given by the Particle Data Group [25]. For the a1(1260)
meson we tookma1

= 1230MeV [25], Γa1
=425MeV (the

average value of the PDG estimate [25]), Γa1→γπ± = 0.64
MeV [26].
The parameters of the f0(980) and f ı

0(1370) mesons
are taken as follows:
f0(980): mf0 = 980 MeV [25], Γf0 = 70 MeV (the av-
erage of the PDG [25] estimate), Γf0→γγ = 0.56 × 10−3

MeV, Γf0→ππ = 0.84 Γf0 [27], Γf0→KK̄ = 0.16 Γf0;
f ı
0(1370): mf ı

0
(1370) = 1430 MeV, Γf ı

0
(1370) = 145 MeV,

Γf ı
0
(1370)→γγ = 0.54 × 10−5 MeV [28], Γf ı

0
(1370)→ππ =

0.26 Γf ı
0
(1370) [29].

The mass and the total decay width of the h1(1170)
meson are taken from PDG: mh1

= 1170 MeV, Γh1
= 360

MeV. The decay h1 → γπ0 has not yet been observed.
Therefore we use this decay width according the work
[15]:

Γh1→γπ0 =
e2

4π
Ch1

(m2
h1

−m2
π0)3

3m3
h1

, (5)

where the coefficient Ch1
can be estimated using nonet

symmetry [15, 30]:

Ch1(1170) ≃ 9Cb1(1235) ≃ 0.45. (6)

As a result we have Γh1→γπ0 ≃ 1.6845± 0.44 MeV.
Recently, a lot of works have been devoted to the study

of the σ meson (see, for example [31–35]). An average of
the most advanced data on the σ meson gives ([35])

mσ = 446± 6, Γσ/2 = 276± 5. (7)

In our analysis we use the values of the mass of the σ
meson and its total decay width in the following intervals:
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FIG. 1: S-wave contributions

mσ = 425÷ 550 MeV, Γσ = 400÷ 600 MeV.
The values of the decay width of σ → γγ we consider

from 0 up to 3 keV.
Expressions for the imaginary parts of the resonances

under consideration are given in Appendix.
Besides the contribution of the σ, f0(980), and

f ı
0(1370) mesons we have taken into account a nonres-
onant contribution of the S-waves with the isospin I = 0
and 2 according to the diagrams of Fig. 1.
It is worth noting that the vertexes of the σ and f0

meson poles in the dispersion approach include the full
dynamics of the transitions on the mass shell. In this
case there is no need to consider direct and rescattering
mechanisms of transition separately.
According to the unitarity condition, the imaginary

part of the amplitude M++ for the π+π−-loop diagram
in Fig. 1 can be written as

ImM
(s)
++ = BReTπ+π−→ππ, (8)

where B ≡ B(γγ → π+π−) is the contribution of the
Born amplitude to the S-wave of the γγ → π+π− ampli-
tude and equal to

B = 16π

(

e2

4π

)

m2
π±

t2
ln

(

1 + q/q0
1− q/q0

)

, (9)

q(q0) is the momentum (energy) of the π meson. The
Born amplitude can be expressed in terms of the I = 0
and I = 2 isospin amplitudes as

B =

√

2

3
B(I=0) +

√

1

3
B(I=2). (10)

Taking into account that

B(γγ → π0π0) = −
√

1

3
B(I=0) +

√

2

3
B(I=2) = 0 (11)

we have [36]

B(I=0) =

√

2

3
B, B(I=2) =

√

1

3
B. (12)

The amplitudes of ππ scattering are expressed through
the amplitudes in the isotopic space T (I=0) and T (2) as
follows:

Tπ+π−→π+π− =
2

3

(

T (0) +
1

2
T (2)

)

,

Tπ+π−→π0π0 =
2

3

(

T (0) − T (2)
)

. (13)

B0 7.26± 0.23 d0 (227.1 ± 1.3)◦ ǫ1 4.7± 0.2

B1 −25.3± 0.5 B (94.0 ± 2.3)◦ ǫ2 −15.0± 0.8

B2 −33.1± 1.2 C (40.4 ± 2.9)◦ ǫ3 4.7± 2.6

B3 −26.6± 2.3 D (−86.9± 4.0)◦ ǫ4 0.38 ± 0.34

TABLE I: The values of the coefficients in Eqs. (17,19). [37]

According to the relations (10) and (13) the imaginary
parts of the ππ loop contributions to the S-wave of the
amplitude M++ are equal to

ImM
(s)
++(γγ → π0π0) =

4

9
BRe

(

T (0) + T (2)
)

, (14)

ImM
(s)
++(γγ → π+π−) =

1

9
BRe

(

4T (0) + T (2)
)

. (15)

The amplitudes T (0) and T (2) can be presented as

ReT (I) =
q0
q
ηI cos δ

I
0(t) sin δ

I
0(t), (16)

where δI0(t) is the phase-shift of the S-wave of ππ scat-
tering with isospin I and ηI is the inelasticity.
The expression for the phase-shift δ0(t) has been de-

termined using the parameterization of Ref. [37]. At low
energy t <∼ 4m2

k we have

cot δ00(t) =

√
t

2q

µ2

t− 1
2µ

2

{

µ√
t
+B0 +B1w(t)

+ B2w(t)
2 +B3w(t)

3
}

, (17)

where

w(t) =

√
t−
√

4m2
k − t

√
t+
√

4m2
k − t

,

and η00 is equal to 1.
For the energy 4m2

k < t < (1.42 GeV)2 we use [37]

δ00(t) = d0 +B
q2k
m2

k

+ C
q4k
m4

k

+Dθ(t− 4m2
η)

q2η
m2

η

, (18)

η00(t) = exp

[

−qk√
t

(

ǫ1 + ǫ2
qk√
t
+ ǫ3

q2k
t

)2

−ǫ4θ(t− 4m2
η)

qη√
t

]

, (19)

where qk =
√

t/4−m2
k and qη =

√

t/4−m2
η; mk and

mη are the masses of K and η mesons, respectively.
The parameters in Eqs(17-19) are listed in Table 1.
To describe the phase-shift δ20(t) we use Schenk’s pa-

rameterization [38] in the energy region up to 1.5 GeV,
assuming that η20 = 1 [39]

tan δ20 =
q

q0

{

A02 +B2
0q

2 + C2
0q

4 +D2
0q

6
}

(

4µ2 − s20
t− s20

)

,

(20)
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FIG. 2: Dependence of (α1 − β1)π± on Γσ→γγ . Lines (1),
(2), and (3) correspond to the calculation of ∆((α1 − β1))
at

√
tσ =446-i276, 400-i300, and 550-i200 MeV, respectively.

Line (4) is the result of the calculations of DSR (4) for (α1 −
β1)π± at

√
tσ =446-i276

where

A2
0 = −0.044, B2

0 = −0.0855µ2, C2
0 = −0.00754µ4,

D2
0 = 0.000199µ6, s20 = −11.9µ2.

III. CALCULATION OF (α1 − β1)π±

The value of (α1 − β1)π0 has been determined from
the investigation of the process γγ → π0π0 in the works
[9, 14, 15]: −1.6± 2.2, −0.6± 1.8, −1.25± 0.08± 0.15.
These values are in good agreement with the prediction

of ChPT [40] (α1 − β1)
ChPT
π0 = −1.9± 0.2. Therefore, in

order to determine (α1 − β1)π± we have added the value
of (α1 − β1)

ChPT
π0 to the results of the calculations of

∆((α1 − β1)) with help of DSR (4) at different values of
the decay width of σ → γγ, when the mass and the total
decay width of the σ meson vary within the following
values: mσ = 400÷ 550 MeV, Γσ = 400÷ 600 MeV.
The results of the calculation are shown in Fig.2.

Line (1) corresponds to calculations with
√
tσ = mσ −

i1/2Γσ = 446 − i276. Lines (2) and (3) correspond
to mσ =400 MeV, Γσ =600 MeV and mσ =550 MeV,
Γσ =400 MeV, respectively. As is evident from this Fig-
ure the values of (α1−β1)π± weakly depend on the mass
and the total decay width of the σ meson in the region
under consideration. The values of (α1 − β1)π± obtained
are within 9.4÷ 8.2.
The greatest contribution to ∆((α1 − β1)) is given by

the ω and h1 mesons. The parameters of the ω meson and
so its contribution are well known. On the other hand

the experimental data on the h1 meson are very poor.
In particular, the decay of this meson into γπ0 was not
observed yet still in the experiment. Therefore, a reliable
experimental determination of ∆((α1 −β1)) will allow to
determine the real value of the decay width Γh1→γπ0 . For
example, if the result of work [1] (α1 − β1)π± = 11.6 is
confirmed, then Γh1→γπ0 = 0.875 MeV.

Line (4) in Fig.1 is the result of the calculations of DSR
(4) for (α1−β1)π± at mσ = 446MeV and Γσ = 552MeV.
This result strongly depends on the decay width Γσ→γγ

and indicates that realistic values of (α1 − β1)π± can be
obtained if Γσ→γγ

<∼ 0.7keV.

The influence of the upper integration limit (Λ) in the
DSR (4) on the results of the calculation was investi-
gated. They are not practically changed for Λ more than
(6 GeV)2. In the present work we performed the integra-
tion up to (20 GeV)2.

IV. CONCLUSIONS

Using the fact that the contribution of the state with
isospin I = 0 to the difference ∆((α1 − β1)) = (α1 −
β1)π± − (α1 − β1)π0 is very small we have analyzed DSR
for this difference at the real values of the pion masses.
DSR has been calculated for the σ meson parameters
within the intervals: mσ = 400÷ 550 MeV, Γσ = 400 ÷
600, Γσ→γγ = 0 ÷ 3 keV. In order to determine (α1 −
β1)π± we have added (α1 − β1)

ChPT
π0 =-1.9 to ∆((α1 −

β1)). The values of (α1 − β1)π± found weakly depend
on the σ meson parameters and are in the range (α1 −
β1)π± = 9.4 ÷ 8.2. This result is in agreement with the
experimental values obtained in work [1], whereas it is at
variance with the calculations in the framework of ChPT
[3].

It has been shown that further experimental investiga-
tion of ∆((α1 − β1)) can be an opportunity to determine
the decay width Γh1→γπ0 .

Besides, the analysis of DSR for (α1 − β1)π± showed
that more realistic values of this parameter ((α1 −
β1)π± < 15) can be obtained with help of DSR (4) if
the decay width Γσ→γγ

<∼ 0.7keV. The values Γσ→γγ
<∼ 1

keV were obtained early in works [9, 10, 41, 42] also. Re-
sults with Γσ→γγ > 1 keV quoted in the resent literature
are listed in [33, 43]
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Appendix A

The contributions of the vector and axial-vector
mesons (ρ, ω, φ, a1, and b1) to ImM++(s, u = µ2) are
calculated with the help of the expression

ImM
(V )
++ (s, u = µ2) = ∓4g2V s

Γ0

(m2
V − s)2 + Γ2

0

(A1)

where mV is the meson mass, the sign ”+” corresponds
to the contribution of the a1 and b1 mesons and

g2V = 6π

√

m2
V

s

(

mV

m2
V − µ2

)3

ΓV→γπD1(m
2
V )/D1(s),

(A2)

Γ0 =

(

q2i (s)

q2i (m
2
V )

)
3
2 m2

V√
s
D1(m

2
V )/D1(s)ΓV (A3)

Here D1 is connected with the centrifugal potential and
equal to D1 = 1 + (qir)

2 [44], r = 1fm is an effective
interaction radius, ΓV and ΓV →γπ are the total decay
width and the decay width into γπ of these mesons. The
momentums q2i for (ρ, ω, φ, a1, and b1) mesons are equal
to (s−4µ2)/4, (s−9µ2)/4, (s−4m2

k)/4, (s−(mρ+µ2)/)4,
and (s− 16µ2)/4, respectively.

Appendix B

The amplitude of the contribution of a scalar meson to
the process γγ → ππ can be written as

T =
gs√

t−Ms − i 12Γs

. (B1)

Then it is easy to show that the imaginary part of the
amplitude ImMσ

++(t) of the σ meson contributions to
the process under consideration could be presented as

ImMσ
++(t) =

gσ(
√
t+Ms)Γ

σ
0 (t)

(t−M2
σ)

2 + (Γσ
0 (t))

2
, (B2)

where

gσ =
8π

t

[

2

3

MσΓγγΓσ
√

M2
σ − 4µ2

]

, (B3)

Γσ
0 =

Mσ(
√
t+Mσ)

2
√
t

(

t− 4µ2

M2
σ − 4µ2

)1/2

Γσ. (B4)

These expressions (B2)-(B4) can be very useful to de-
scribe scaler mesons with large decay widths.

As the two K mesons give a big contribution to the
decay width of the f0(980) meson and the threshold of
the reaction γγ → KK is very close to the mass of the
f0(980) meson, we consider Flatté’s expression [45] for
the f0(980) meson contribution to the process γγ → ππ.
For t > 4m2

k:

ImMf0
++ = gf0

Γ0f0

(m2
f0

− t)2 + Γ2
0f0

, (B5)

where

Γ0f0 =



Γf0→ππ

(

t− 4µ2

m2
f0

− 4µ2

)1/2

+Γf0→kk

(

t− 4m2
k

m2
f0

− 4m2
k

)1/2


mf0 . (B6)

For t < 4m2
k:

ImM++ = gf0Γ0f0

([

m2
f0 − t

−
(

4m2
k − t

m2
f0

− 4m2
k

)1/2

mf0Γf0→kk





2

+ Γ2
0f0







−1

,(B7)

Γ0f0 = Γf0→ππmf0

(

t− 4µ2

m2
f0

− 4µ2

)1/2

. (B8)

[1] J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005).
[2] Yu.M. Antipov at al., Phys. Lett. B 121, 445 (1983);

Yu.M. Antipov at al., Z. Phys. C 26, 495 (1983).
[3] J. Gasser, M.A. Ivanov, and M.E. Sainio, Nucl. Phys.

B745, 84 (2006).
[4] T.A. Aibergenov at al., Czech. J. Phys. B 36, 948 (1986).
[5] A. Guskov (COMPASS Collaboration), Fizika B 17, 313

(2008).
[6] L.V. Fil’kov and V.L. Kashevarov, Proceed. of ”NSTAR

2007”, Bonn, Germany, 05 – 08 September (2007), p.179;

arXiv:0802.0965 [nucl-th].
[7] L.V. Fil’kov and V.L. Kashevarov, Proceed. of 6th Intern.

Workshop on Chiral Dynamics, 06 – 10 July (2009), Bern,
Switzerland, PoS (CD09) 036; arXiv:0909.4849 [hep-ph].

[8] Th. Walcher, Progr. Part. Nucl. Phys. 61, 106 (2008).
[9] L.V. Fil’kov and V.L. Kashevarov, Eur. Phys. J. A 5, 285

(1999).
[10] L.V. Fil’kov and V.L. Kashevarov, Phys. Rev. C 72,

035211 (2005).
[11] L.V. Fil’kov and V.L. Kashevarov, Phys. Rev. C 73,

http://de.arxiv.org/abs/0802.0965
http://de.arxiv.org/abs/0909.4849


6

035210 (2006).
[12] D. Babusci et al., Phys. Lett. B277, 158 (1992).
[13] J.F. Donoghue and B.R. Holstein, Phys. Rev. D 48, 137

(1993).
[14] A.E. Kaloshin and V.V. Serebryakov, Z. Phys. C 64, 689

(1994).
[15] R. Garcia-Martin and B. Moussallam, Eur. Phys. J. C

70, 155 (2010).
[16] U. Bürgi, Nucl. Phys. B479, 392 (1997).
[17] C. Berger et al., (PLUTO Collaboration), Z. Phys. C 26

199 (1984).
[18] A. Courau et al., (DM1 Collaboration), Nucl. Phys. B

271, 1 (1986).
[19] Z. Ajaltoni et al., (DM2 Collaboration), Phys. Lett. B

194, 573 (1987).
[20] J. Boyer et al., (Mark II Collaboration), Phys. Rev. D

42, 1350 (1990).
[21] A.I. L’vov and V.A. Petrun’kin, Preprint of P.N. Lebedev

Physical Institute, No. 170 (1977).
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