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Generalized dipole polarizabilities and the spatial structure of hadrons
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We present a phenomenological discussion of spin-independent, generalized dipole polarizabilities of had-
rons entering the virtual Compton scattering processg* h→gh. We introduce a new method of obtaining a
tensor basis with appropriate Lorentz-invariant amplitudes which are free from kinematical singularities and
constraints. The result is summarized in terms of a compact effective Lagrangian. We then motivate a gauge-
invariant separation into a generalized Born term containing ground-state properties only and a residual con-
tribution describing the model-dependent internal structure. The generalized dipole polarizabilities are defined
in terms of Lorentz-invariant residual amplitudes. Particular emphasis is laid on a physical interpretation of
these quantities as characterizing the spatial distributions of the induced electric polarization and magnetization
of hadrons. It is argued that three dipole polarizabilities—namely, the longitudinal electricaL(q2), the trans-
verse electricaT(q2), and the magneticb(q2) ones—are required in order to fully reconstruct local polariza-
tions induced by soft external fields in a hadron. One of these polarizabilities,aT(q2), describes an effect of
higher order in the soft final-photon momentumq8. We argue that the associated spatial distributions obtained
via Fourier transforms in the Breit frame are meaningful even for such a light particle as the pion. The spatial
distributions are determined at large distancesr;1/mp for pions, kaons, and octet baryons by the use of chiral
perturbation theory.
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I. INTRODUCTION

Recently, Compton scattering with virtual photons@vir-
tual Compton scattering~VCS!# has attracted considerab
experimental and theoretical interest~for an overview see,
e.g., @1–3# and references therein!. Both the near-threshold
@4# and high-momentum transfer regimes@5–7# of VCS turn
out to be very informative for studying the structure of ha
rons.

In the below-threshold region a set of structure functio
the so-called generalized polarizabilities~GPs!, has been in-
troduced in Ref. @4# in order to parametrize structure
dependent effects in the VCS amplitude to leading orde
the final-photon momentumq8. These GPs contain mode
dependent information beyond the low-energy theor
~LET! of real @8,9# and virtual@10# Compton scattering. The
first experimental results for the generalized polarizabilit
of the proton have recently been obtained at the Mainz
crotron ~MAMI ! for a four-momentum squared ofQ2

50.33 GeV2 @11#. Additional experiments aiming at proto
polarizabilities are presently carried out at Jefferson Lab@12#
and MIT-Bates@13#. A sensitivity study of inelastic high-
energy pion-electron scattering on the pion VCS amplitu
has been performed as part of the Fermilab E781 SEL
experiment@14,15#.

Theoretical predictions of the nucleon GPs have been
tained in different frameworks such as the constituent qu
model@4,16–18#, the linears model@19#, chiral perturbation
theory~ChPT! @20,21#, the Skyrme model@22#, models with
effective photon-pion-nucleon Lagrangians@23,24#, and dis-
persion theories@25,26#. Pion and kaon GPs have been d
cussed at the one-loop level of ChPT@27,28#.

In the present paper we are not so much concerned
0556-2813/2001/64~1!/015203~20!/$20.00 64 0152
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specific results for GPs as obtained from various models
hadrons. Our investigations are rather directed to an ana
of the general properties of GPs as well as their phys
interpretation which, in our opinion, was only insufficient
covered previously. We mainly consider kinematical aspe
relegating dynamical aspects of properties of the general
polarizabilities such as sum rules, dispersion relations, e
to a future publication. In order to avoid complications r
lated to the spin of the target we only discuss the simp
case of a~pseudo!scalar particle like the pion. Our conside
ations may as well be applied to the spin-averaged part of
VCS amplitude for a target of arbitrary spin. For illustrativ
purposes we make use of results obtained in the framew
of ChPT.

Our work is organized as follows. In Sec. II, we introdu
a new method of obtaining invariant amplitudes of elect
magnetic reactions free from kinematical singularities a
constraints, using~double! virtual Compton scattering as a
example. Section III contains a motivation for choosing
specific~though standard! form of the Born amplitude which
is used for separating convectional from internal contrib
tions in the scattering amplitude. In Sec. IV, we show ho
generalized dipole polarizabilities can be defined in
Lorentz-invariant manner from the invariant amplitud
without introducing inconvenient singular kinematical fa
tors. In particular, we show that it is natural to introduce o
more dipole polarizability—namely, the transverse elect
one—which is needed in order to recover the electric po
ization of the target induced by a soft external electric fie
This quantity does not contribute in theO(q8) limit of pre-
vious analyses. We provide another explanation why to
order only two of the three spin-independent polarizabilit
are accessible in photon electroproduction experiments.
©2001 The American Physical Society03-1
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give a physical interpretation of the generalized dipole po
izabilities in terms of the densities of the induced electric a
magnetic polarizations. In Sec. V we argue that the ass
ated space distributions are meaningful even for a light p
ticle like the pion. We determine such space distributions
large distancesr;1/mp derived from various form factors
using the predictions of ChPT. In passing, we also inclu
SU(3)f extensions of previous results obtained within tw
flavor heavy-baryon ChPT~HBChPT!. Analytical results of
spatial distributions obtained via dispersion relations are
egated to the Appendix.

II. TENSOR BASIS AND INVARIANT AMPLITUDES
OF VCS

In our discussion of virtual Compton scattering off a sp
less hadron, we will often refer to this hadron as a ‘‘pion
although our general considerations also hold true for o
spinless particles, nuclei, and even atoms, as well as for s
averaged amplitudes. We start our analysis with an inve
gation of the general kinematical structure of the pion V
amplitudeTVCS for the case of two virtual photons, assumin
that both initial and final pions are on shell. Our aim is
construct a tensor basis and a related set of Lorentz-inva
amplitudesBi that provides a complete parametrization
TVCS. We require allBi to be free from kinematical singu
larities and constraints, because this simplifies the classi
tion of low-energy characteristics of the pion and also p
vides technical advantages, for instance, when discus
dispersion relations.

The problem of finding a set of amplitudes for VCS w
already addressed and solved by Tarrach for both spin-0
spin-1/2 targets@29# by using a projection technique orig
nally proposed by Bardeen and Tung@30#. Although, in prin-
ciple, we could directly use the results of Ref.@29#, we prefer
to construct the tensor basis again, first, in order to dem
strate a very simple and powerful alternative method wh
avoids projections and, second, in order to rearrange
VCS tensor in a manifestly gauge-invariant form and to s
it into structures contributing to real Compton scatterin
VCS with one photon virtual and, finally, VCS with bot
photons virtual.

To begin with, we define the amplitudeTVCS of virtual
Compton scattering,

g~e,q!1p~p!→g~e8,q8!1p~p8!, ~2.1!

as

TVCS5emen8* Tmn, ~2.2!

whereTmn is the Compton tensor given in terms of the c
variant ~Wick! TW product of the electromagnetic currents

Tmn5E ^p~p8!u iTW@ j m~x! j n~0!#up~p!& e2 iq•x d4x.

~2.3!

We normalize all single-particle states as

^p8up&52p0~2p!3d3~p2p8!, ~2.4!
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so that in case of real photons theS matrix reads

Sf i5 i ~2p!4d4~p1q2p82q8!TVCS. ~2.5!

As a result of four-momentum conservationp1q5p81q8,
the tensorTmn depends on three linearly independent vect
P, Q, andR:

P5
1

2
~p1p8!, Q5

1

2
~q1q8!,

R5
1

2
~p82p!5

1

2
~q2q8!. ~2.6!

Since we only consider the case of initial and final pions
the mass shell, the vectorsP, Q, andR are constrained by

P25M22R2, P•R50, ~2.7!

whereM is the pion mass. Hence, we can choose four in
pendent kinematical invariants which, for the moment,
take to beQ2, R2, P•Q, andQ•R.

The discrete symmetries as well as gauge invariance
pose restrictions on the general form of the Compton ten
For charged pions the combination of pion crossing w
charge-conjugation symmetry results in1

Tmn~P,Q,R!5Tmn~2P,Q,R!, ~2.8!

whereas photon crossing yields

Tmn~P,Q,R!5Tnm~P,2Q,R!. ~2.9!

Gauge invariance requires

qmTmn5~Q1R!mTmn50,

qn8T
mn5~Q2R!nTmn50, ~2.10!

where the first and second equations are not indepen
once photon-crossing symmetry is imposed. Finding a so
tion to Eqs.~2.10! without introducing kinematical singulari
ties or constraints is the main challenge in constructing
propriate amplitudes.

Because of parity conservation, the Compton tensor tra
forms as a proper second-rank Lorentz tensor. The most
eralTmn satisfying the crossing-symmetry conditions of Eq
~2.8! and ~2.9! can be written as a linear combination

Tmn5(
i 51

10

tmn
i Ai ~2.11!

of ten basis tensorstmn
i which include the metric tensorgmn

and nine bilinear products ofP, K, andQ:2

1For the neutral pion~but not for the neutral kaon!, which is its
own antiparticle, only pion crossing is required to obtain Eq.~2.8!.

2As a result of parity, structures containing a single fully antisy
metric tensoremnab are excluded.
3-2



at

-

-

n
rb

ve
e-

n
lly
r

.

er
rm

en-

tor
fi-
.

ro-

GENERALIZED DIPOLE POLARIZABILITIES AND THE . . . PHYSICAL REVIEW C 64 015203
tmn
1 5gmn ,

tmn
2 5PmPn ,

tmn
3 5QmQn ,

tmn
4 5RmRn ,

tmn
5 5~PmQn1PnQm!~P•Q!,

tmn
6 5~PmQn2PnQm!~P•Q!~Q•R!,

tmn
7 5~PmRn1PnRm!~P•Q!~Q•R!,

tmn
8 5~PmRn2PnRm!~P•Q!,

tmn
9 5~QmRn1QnRm!~Q•R!,

tmn
10 5~QmRn2QnRm!. ~2.12!

Appropriate factors ofP•Q have been introduced such th
all tmn

i are even functions ofP, as required by Eq.~2.8!.
Correspondingly, factors ofQ•R provide for photon-
crossing-even basis tensors@see Eq.~2.9!#. With such a
choice oftmn

i , all the functionsAi depend on the crossing
even variablesQ2, R2, (P•Q)2, and (Q•R)2.

At this point it might be worthwhile to explain why intro
ducing factors ofP•Q andQ•R into Eqs.~2.12! is harmless
to the analytical properties of the functionsAi in Eq. ~2.11!.
For that purpose, let us omit in Eqs.~2.12! all factors of

P•Q or Q•R, and denote the resulting basis tensors byt°mn
i

with A° i the corresponding functions of the expansion ofTmn

in terms of the ‘‘reduced’’ tensorst°mn
i . Let us further as-

sume that the tensorTmn results from some set of Feynma
diagrams consistent with all symmetries. Consider an a
trary Feynman diagram denoted byG. Obviously, its contri-
bution to Tmn can be expressed in terms ofgmn or bilinear

products of four-momenta~these are just thet°mn
i ) multiplied

by scalar coefficients. Any such coefficient will at most ha
dynamicalsingularities related with propagators of interm
diate particles but nokinematicalsingularities. Stated differ-

ently, all individual contributionsA° i
G to the functionsA° i are

free from kinematical singularities. In general, a single co
tribution is not separately crossing symmetric. Eventua
crossing symmetry ofTmn is obtained after adding one o
several crossed partners,Gc , of the diagramG. Let us con-

sider, for instance, the tensor structuret°mn
5 5PmQn1PnQm

which is odd underP→2P. We can then write

A° 5
G1Gc~x!5A° 5

G~x!2A° 5
G~2x!, ~2.13!

where we introducedx5P•Q and, for brevity, omitted
P-independent arguments likeQ2. The second term in Eq
~2.13! represents the contribution of the crossed diagramGc

which makes the amplitudeA° 5
G1Gc(x) odd. Note that both

contributions are nonsingular asx→0. From Eq.~2.13! we
01520
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conclude thatA° 5
G1Gc(x)5xA5

G1Gc(x), where A5
G1Gc(x) is

an even function ofx which has no pole atx50 and which
therefore has no kinematical singularities at all. In oth
words, the sum of all Feynman diagrams contains the te
tmn

5 A5, the tensortmn
5 carrying a factor ofP•Q and the func-

tion A5 having no kinematical singularities.
The same consideration immediately applies to the t

sors tmn
8 and tmn

9 . In the case oftmn
6 or tmn

7 , we have to
apply the procedure given by Eq.~2.13! twice — first for

showing that the corresponding functionA° i contains the fac-
tor of P•Q and second for showing that it contains the fac
of Q•R as well. Eventually, we conclude that all the coef
cientsAi in Eq. ~2.11! are free from kinematical singularities

By means of the factorsP•Q andQ•R in the tensor basis
Eq. ~2.12! we can solve the constraints of Eqs.~2.10! without
introducing singular coefficients and without using the p
jectors suggested in Ref.@30#. Indeed, inserting Eq.~2.11!
for Tmn into Eqs. ~2.10! and collecting coefficients of the
independent four-momentaP, Q, andR, we obtain a set of
six linear equations in the functionsAi , of which only five
are independent:

A21Q2A52~Q•R!2A61~Q•R!2A72R2A850,

A52Q2A61R2A72A850,

A11Q2A31~P•Q!2A51~Q•R!2A92R2A1050,

A31~P•Q!2A61R2A92A1050,

A11R2A41~P•Q!2A81~Q•R!2A91Q2A1050,

A41~P•Q!2A71Q2A91A1050. ~2.14!

One can now expressAi , i 51, . . . ,5, in terms of the re-
maining functionsAi , i 56, . . .,10, without singular coeffi-
cients:

A15R2~P•Q!2A72~P•Q!2A8

1@Q2R22~Q•R!2#A91~R22Q2!A10,

A25@~Q•R!22~Q2!2#A6

1@Q2R22~Q•R!2#A71~R22Q2!A8 ,

A352~P•Q!2A62R2A91A10,

A452~P•Q!2A72Q2A92A10,

A55Q2A62R2A71A8 . ~2.15!

Using Eqs.~2.15!, we can finally rewrite Eq.~2.11! as

Tmn5(
i 56

10

Tmn
i Ai„Q

2,R2,~P•Q!2,~Q•R!2
…, ~2.16!

where
3-3



ng

to
n

g
gu
o

s
it

is
, a

v
ls

n

ne

d

-
al

ec-

tic

s of

r-

d
n

l

er

L’VOV, SCHERER, PASQUINI, UNKMEIR, AND DRECHSEL PHYSICAL REVIEW C64 015203
Tmn
6 5@~Q•R!22~Q2!2#PmPn2~P•Q!2QmQn1Q2~P•Q!

3~PmQn1PnQm!1~P•Q!~Q•R!~PmQn2PnQm!,

Tmn
7 5R2~P•Q!2gmn1@Q2R22~Q•R!2#PmPn

2~P•Q!2RmRn2R2~P•Q!~PmQn1PnQm!

1~P•Q!~Q•R!~PmRn1PnRm!,

Tmn
8 52~P•Q!2gmn1@R22Q2#PmPn1~P•Q!

3~PmQn1PnQm!1~P•Q!~PmRn2PnRm!,

Tmn
9 5@Q2R22~Q•R!2#gmn2R2QmQn2Q2RmRn

1~Q•R!~QmRn1QnRm!,

Tmn
10 5~R22Q2!gmn1QmQn2RmRn1~QmRn2QnRm!

~2.17!

are five basis tensors which explicitly satisfy the crossi
symmetry and gauge-invariance conditions of Eqs.~2.8!–
~2.10!. Respectively, the five functionsAi , i 56, . . .,10, can
be considered as invariant amplitudes of virtual Comp
scattering which are free from kinematical singularities a
constraints.

In passing we note that the same method of constructin
basis and invariant amplitudes free from kinematical sin
larities and constraints also works for the VCS amplitude
a spin-1/2 target such as the nucleon.

The tensorsTmn
8 andTmn

10 have exactly the same form a
for real Compton scattering and can easily be identified w
the more common notation~see, e.g., Ref.@31#!

Tmn
8 52~P•q!~P•q8!gmn2~q•q8!PmPn

1~P•q8!Pmqn1~P•q!Pnqm8 ,

Tmn
10 5qm8 qn2~q•q8!gmn . ~2.18!

However, also the remaining tensorsTmn
i , i 56,7,9, and

thus the corresponding functionsAi contribute to real Comp-
ton scattering~RCS!. This, clearly, is a drawback of the bas
of Eqs.~2.17! and it would be convenient to have, instead
basis such thatexclusivelythe two tensorsTmn

8 andTmn
10 con-

tribute to RCS, another one appears for the case of one
tual photon, and, finally, the two remaining structures a
contribute to g* p→g* p. To that end let us introduce
gauge-invariant combinations of photon polarizations a
momenta,

Fmn52 i ~qmen2qnem!, Fmn8 5 i ~qm8 en8* 2qn8em8* !.
~2.19!

These second-rank tensors represent the Fourier compo
of the electromagnetic field-strength tensorFmn(x)
5]mAn(x)2]nAm(x) associated with plane-wave initial an
final photons described by the vector potentialsAm(x)
5em exp(2iq•x) and Am8 (x)5em8* exp(iq8•x), respectively.
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In terms ofFmn andFmn8 it turns out to be rather straightfor
ward to identify structures contributing for real or virtu
photons.

For example, theA10 contribution to the VCS amplitude
reads

eme8* nTmn
10 A1052

1

2
FmnFmn8 A10, ~2.20!

which can be interpreted as the matrix element of the eff
tive Lagrangian3

L52
1

4
A10FmnF mnf†f. ~2.21!

Here A10 represents a differential operator in terms of~co-
variant! derivatives acting on both pion and electromagne
fields with Fourier components given by the functionA10.
Similarly, the contribution of the amplitudeA8 can be writ-
ten as

eme8* nTmn
8 A852~PmFmn!~PrFrn8 !A8 , ~2.22!

which results from the effective interaction Lagrangian

L52
1

2
A8F anFbnP̂aP̂bf†f, ~2.23!

where the action ofP̂aP̂bf†f is defined by

P̂bf†f5
i

2
f†Dbf2

i

2
~Dbf!†f,

P̂aP̂bf†f52
1

4
f†DaDbf1

1

4
~Daf!†Dbf

1
1

4
~Dbf!†Daf2

1

4
~DaDbf!†f,

~2.24!

and Daf5]af1 ieZAaf with e.0, e2/4p'1/137, with
Ze denoting the charge of the particle.

The tensor structuresTmn
i , i 56,7,9, involve higher pow-

ers of photon momenta and thus are related to derivative
the electromagnetic fields. Introducing the four-vectors

2 iqmFmn52q2en1~q•e!qn ,

iq8mFmn8 52q82e8n* 1~q8•e8* !qn8 , ~2.25!

3Here, we assume that ‘‘pion’’ and ‘‘antipion’’ are different pa

ticles, such asp1 andp2 or K0 andK̄0. For the case of a charge
pion, the fieldf[p1 is given in terms of the Hermitian, Cartesia
isospin componentsf i as f5(f12 if2)/A2 @f†[p25(f1

1 if2)/A2# and destroys ap1 @p2#. In the case of the neutra
pion, we have to takef5f†5f3 and replace the factor of 1/4 in
Eq. ~2.21! by 1/8. These trivial changes also apply to the oth
Lagrangians written below.
3-4
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which vanish for real photons, we obtain two more tensor
namely,Tmn

9 andTmn
6 2Tmn

7 —by using the identities

~qmFmn!~q8rFrn8 !5eme8* n@4Tmn
9 1~R22Q2!Tmn

10 #
~2.26!

and

~PnqmFmn!~Psq8rFrs8 !

5eme8* n@22Tmn
6 12Tmn

7

1~R21Q2!Tmn
8 2~P•Q!2Tmn

10 #. ~2.27!

The remaining linear combinationTmn
6 1Tmn

7 is contained in
a product similar to Eq.~2.27!, however with photon mo-
menta interchanged in one factor:

~PnFmnqm8 !~Psq8rFrs8 !1~PnFmn8 qm!~PsqrFrs!

5eme8* n~22Tmn
6 22Tmn

7 22R2Tmn
8 !. ~2.28!

With the above identities the most general VCS amplitu
can be written in the following manifestly gauge-invaria
form:

TVCS5
1

2
FmnFmn8 B11~PmFmn!~PrFrn8 !B21@~Pnq8mFmn!

3~Psq8rFrs8 !1~PnqmFmn!~PsqrFrs8 !#B3

1~qmFmn!~q8rFrn8 !B41~PnqmFmn!~Psq8rFrs8 !B5 .

~2.29!

Here all the invariant amplitudesBi are free from kinemati-
cal singularities and constraints, because the transforma
from the basisTmn

i of Eq. ~2.17! to the basis of Eq.~2.29! is
nonsingular. This can also be easily seen from the follow
relations between the two sets of amplitudesAi andBi :

B152A101
~P•Q!2

4
~A62A7!1

R22Q2

4
A9 ,

B252A81
R2

2
~A61A7!2

R21Q2

4
~A62A7!,

B352
1

4
~A61A7!, B45

1

4
A9 , B55

1

4
~A72A6!.

~2.30!

The determinant of the transformation expressingBi
( i 51, . . . ,5) interms ofAi ( i 56, . . .,10) is 1/325” 0, inde-
pendently of the values of the kinematical variables.

In view of the rather compact and transparent structure
Eq. ~2.29!, we will use in the following the parametrizatio
of TVCS given by the amplitudesBi . As seen from Eqs
~2.25! and~2.29!, only the amplitudesB1 andB2 are needed
to describe real Compton scattering, because thenqmFmn

5q8mFmn8 50. When only one photon is virtual, one mo
amplitude (B3) contributes. All five amplitudesBi enter,
when both photons are virtual.
01520
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Equation~2.29! can be interpreted as the matrix eleme
of the effective interaction

L5
1

4
@B̂1~Fmn!212B̂4~]mFmn!2#f†f

1
1

2
@B̂2F amFbm1B̂5~]mF am!~]nFbn!

22B̂3F am~]m]nFbn!# P̂aP̂bf†f, ~2.31!

whereB̂i are differential operators acting on all the fields a
determined by their Fourier componentsBi .

Of course, after substitutingq→q1 , q8→2q2 , p→
2p1, andp8→p2, Eq. ~2.29! also describes the general k
nematical structure of the amplitude of the crossed reac
g(q1)g(q2)→p(p1)p(p2) for on-shell pions. Exactly the
same considerations apply to any other spin-0 hadron ass
ing the same symmetry principles~Lorentz and gauge invari
ance,P, T, andC conservation! and are also applicable to
properly spin-averaged VCS amplitude for hadrons with
nite spin.

As mentioned before, the functionsBi depend on the four
invariantsQ2, R2, (Q•R)2, and (P•Q)2. As an alternative,
the following combinations of the first three quantities can
used as independent arguments ofBi : q21q8252(R2

1Q2), q•q85R22Q2, andq2q825(R21Q2)224(Q•R)2.
Thus, we may write

Bi5Bi~n2,q•q8,q21q82,q2q82!, ~2.32!

wheren is defined as

Mn5P•Q5P•q5P•q8. ~2.33!

Besides being manifestly crossing symmetric, this form ofBi
has the advantage of having a simple limit if one or bo
photons become real.

Finally, the Mandelstam invariants of the VCS reacti
read

s5~p1q!25M212Mn1q•q8,

u5~p2q8!25M222Mn1q•q8,

t5~q2q8!25q21q8222q•q8. ~2.34!

III. BORN TERMS AND GAUGE INVARIANCE

In order to describe the internal structure of the pion
terms of its generalized polarizabilities as tested in virt
Compton scattering, we first have to isolate a convect
contribution which originates in two successive interactio
of the photons with the electromagnetic current of the pi
resulting in singularities at zero photon momenta. For
pointlike ~pseudo!scalar particle of electric chargeeZ, the
interaction with an external electromagnetic field can be
3-5
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scribed in terms of the Lagrangian4

L0~Dmf,f!5Dmf~Dmf!†2M2ff†, ~3.1!

where the covariant derivative

Dmf5~]m1 ieZAm!f ~3.2!

ensures the invariance of the Lagrangian under thecanonical
gauge transformation

Am~x!°Am~x!1]mL~x!, f~x!°exp@2 ieZL~x!#f~x!.
~3.3!

However, such a description is not sufficient for an extend
particle and we have to modify the above effective Lagra
ian.

To that end, let us first consider a classical system on
constituents with chargesea5eZa and massesma which is
exposed to a static external potentialA0(r). The electrostatic
energy of such a system is given by

W5 (
a51

n

eaA0~ra!

5 (
a51

n

eaFA0~R!1rai¹ iA0~R!

1
1

2
raira j¹ i¹ jA0~R!1•••G , ~3.4!

whereR is the center of mass of the charge distribution a
ra5ra2R are relative coordinates. In the continuum lim
the expression for a spherically symmetric distribution re

W5eZA0~R!1
e

6
^ZrE

2&“2A0~R!1•••5eF~“2!A0~R!,

~3.5!

where (aea→*r(r ) dr5Ze is the total charge,(aeara
2

→*r 2r(r ) dr5e^ZrE
2& is the electric mean square radiu

andF(2q2)5Z2 1
6 ^ZrE

2&q21••• is the electric form factor.
Of course, the response of the extended system to the e
nal field is determined by the potential and its derivativ
together with the corresponding moments of the charge
tribution.

A relativistic generalization to the case of an extend
pion suggests the following substitution for the vector pot
tial in Eq. ~3.2!:

ZAm~x!→F~2]2!Am~x!, ~3.6!

which leads to the effective Lagrangian5

4Since we do not treat the electromagnetic field as a dynam
variable, it will not be included in the list of arguments of th
Lagrangian.

5Since we want to apply the Lagrangian for the case of space
virtual photons, we assume the form factor to be real.
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Leff~]mf,f!5@]m1 ieF~2]2!Am#f@]m2 ieF~2]2!Am#f†

2M2ff† ~3.7!

and to the first-order electromagnetic vertex

Gm~p8,p!5~p81p!mF~q2!, q5p82p, F~0!5Z.
~3.8!

Note that Eq.~3.7! is no longer invariant under the canonic
gauge transformation of Eq.~3.3! and, correspondingly, the
electromagnetic vertex of Eq.~3.8! does not satisfy the
Ward-Fradkin-Takahashi identity@32–34#

qmGm~p8,p!5” Z@D21~p8!2D21~p!#, ~3.9!

where D(p)51/(p22M2) is the free propagator o
L0(]mf,f). In fact, a different gauge transformation

Am~x!°Am~x!1]mL~x!,

f~x!°exp@2 ieF~2]2!L~x!#f~x! ~3.10!

defines a local realization of the symmetry group U~1!; i.e.,
under two successive transformations described by smoo
varying functionsL1 andL2, the fields transform as

Am°Am1]mL1°~Am1]mL1!1]mL2

5Am1]m~L11L2!,

f°exp@2 ieF~2]2!L1#f

°exp@2 ieF~2]2!L2#exp@2 ieF~2]2!L1#f

5exp@2 ieF~2]2!~L11L2!#f. ~3.11!

Accordingly, we define anoncanonicalcovariant derivative
as

D̃mf5@]m1 ieF~2]2!Am#f, ~3.12!

such thatD̃mf transforms in the same way asf under Eq.
~3.10! and the effective Lagrangian

Leff~]mf,f!5L0~D̃mf,f!5D̃mf~D̃mf!†2M2ff†

~3.13!

remains invariant under Eq.~3.10!. We stress that from a
formal point of view any ~real! function represented by a
power series would yield a realization of gauge invarian
and that the choice of electromagnetic form factor is entir
motivated on physical grounds through Eqs.~3.5! and ~3.6!.

Although a description of a finite-size pion based on E
~3.7! is mathematically consistent, it turns out to be inconv
nient as soon as interactions of several particles with dif
ent form factors are considered. For instance, even a sim
local interaction of fieldsfa (a51, . . . ,n) of the form

Lint~fa!5g)
a

fa , ~3.14!

al

e
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with a vanishing net charge associated with the produc
fields, is no longer automatically gauge invariant as soon
different fields transform with different form factorsFa . Un-
der the gauge transformation of Eq.~3.10!, the interaction
Lagrangian, Eq.~3.14!, picks up a space-time-depende
phase factor

)
a

exp@2 ieFa~2]2!L~x!#5” 1. ~3.15!

On the other hand, this would not happen for the transform
tion law of Eq.~3.3!, because

)
a

exp@2 ieZaL~x!#51, ~3.16!

provided the electric charge is conserved at the vertex,
(aZa50.

We therefore redefine the field as follows@35#:

f~x!5w~x!exp@ ie f~2]2!]mAm~x!#, ~3.17!

where6

f ~q2!5
1

q2
@F~q2!2Z# ~3.18!

generates a new field which transforms canonically un
Eq. ~3.10!, i.e.,

w5exp@2 ie f~2]2!]mAm#f ~3.19!

°exp@2 ie f~2]2!~]mAm1]2L!#exp@2 ieF~2]2!L#f

5exp@2 ie f~2]2!~]mAm1]2L!#

3exp$2 ie@Z2]2f ~2]2!#L%f

5exp@2 ie f~2]2!]mAm#exp~2 ieZL!f

5exp~2 ieZL!w. ~3.20!

Rewritten in terms ofw, the Lagrangian~3.13! reads

L0~Dm
f w,w!5Dm

f w~D f mw!†2M2ww†, ~3.21!

where the second~noncanonical! covariant derivativeDm
f w is

defined as

Dm
f w5@]m1 ieZAm1 ie f~2]2!]nFmn#w, ~3.22!

and Fmn5]mAn2]nAm . This second definition ensures c
nonical gauge invariance and simultaneously accounts
the finite size of the particle.

Organized in powers of the elementary charge, the
grangian can be expressed in terms of the canonical co
ant derivative as

6Recall our assumption thatF can be expanded in an absolute
convergent series.
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L0~Dm
f w,w!5L0~Dmw,w!1L1~Dmw,w!1L2~w!.

~3.23!

HereL0 and

L1~Dmw,w!52 ie@w†DJ mw# f ~2]2!]nF mn ~3.24!

generate the electromagnetic vertex

Gm~p8,p!5~p81p!mF~q2!2qm~p822p2! f ~q2!,

q5p82p, ~3.25!

which now satisfies the Ward-Fradkin-Takahashi identity

qmGm~p8,p!5Z~p822p2!5Z@D21~p8!2D21~p!#
~3.26!

with the free propagator. The last term

L2~w!5e2@ f ~2]2!]nF mn#@ f ~2]2!]rFmr#ww†

~3.27!

vanishes, when at least one of the photons is real, thus
isfying ]nF mn50.

In the following wedefinethe~generalized! Born terms of
the virtual Compton scattering amplitude as the VCS am
tude constructed from either of the Lagrangians of Eqs.~3.7!
and ~3.21!. According to the equivalence theorem of L
grangian field theory@36,37#, the scattering amplitude doe
not depend on the Lagrangian used as long as all exte
pions are on shell. To be specific, one obtains

Tmn
Born5e2F~q2!F~q82!F2gmn2

~2p1q!m~2p81q8!n

~p1q!22M2

2
~2p2q8!n~2p82q!m

~p2q8!22M2 G . ~3.28!

In fact, such a form of the Born amplitude is standard fo
discussion of structure-dependent characteristics of the
get, and we have shown that this is a very natural gene
zation of the Born amplitude for a pointlike particle to th
case of a finite-size particle. As discussed in Ref.@38# in
detail, such a generalization incorporates all low-energy s
gularities of the total VCS amplitude so that the non-Bo
part of the amplitude can be expanded in powers of sm
photon momenta giving rise to~generalized! polarizabilities.

IV. LOW-MOMENTUM EXPANSION AND GENERALIZED
DIPOLE POLARIZABILITIES

A well-known, general method of obtaining the low
energy expansion of a reaction amplitude consists of expa
ing invariant amplitudes free from kinematical singulariti
and constraints in a power series~see, e.g.,@30,39#!. Follow-
ing this method, we first decompose the invariant amplitu
Bi(n

2,q•q8,q21q82,q2q82) into generalized Born and non
Born contributions

Bi5Bi
Born1Bi

NB , i 51, . . . ,5. ~4.1!
3-7



c
g
ll
n

Bo
o

r
e

ar

bi

f
t

ve
-

As

m

ei

g.
ag-

s
ulti-

nts
nd

e

eter-
ic

or
o-
-

, let

L’VOV, SCHERER, PASQUINI, UNKMEIR, AND DRECHSEL PHYSICAL REVIEW C64 015203
The generalized Born or convection contribution is asso
ated with a set of diagrams describing single-pion exchan
in s andu channels withgpp vertices taken in the on-she
regime. As we have seen in the previous section, additio
nonpole terms are necessary to render the generalized
terms gauge invariant. The thus constructed amplitude p
sesses all the symmetries of the total amplitudeTVCS and
contains all singularities ofTVCS at low energies. Using the
specific form of the Born amplitudeTVCS

Born given in the pre-
vious section, we find the~generalized! Born parts of the
invariant amplitudesBi ,

B1
Born5~q•q8!C, B2

Born524C, C5
2e2F~q2!F~q82!

~s2M2!~u2M2!
,

~4.2!

andBi
Born50 for i 53,4,5.

At energies below inelastic thresholds, the non-Born pa
of Bi are regular functions of the kinematical variables. Th
determine the deviation ofTVCS from its Born value of Eq.
~3.28!. In particular, when the momenta of both photons
small,q;q8→0, one obtains

TVCS5TVCS
Born1

1

2
FmnFmn8 b1~0!1~PmFmn!~PrFrn8 !b2~0!

1O~q4!, ~4.3!

where the constantsbi(0)[Bi
NB(0,0,0,0), i 51,2, can be re-

lated to the ordinary electric and magnetic dipole polariza
ities of low-energy real Compton scattering,

8pM ā52b1~0!2M2b2~0!, 8pM b̄5b1~0!.
~4.4!

Equations~4.3! and~4.4! provide a Lorentz-invariant form o
the low-energy theorem for virtual Compton scattering up
second order in the photon momenta~for the case of the
nucleon, see Ref.@10#!.

Now, following the original idea of Guichonet al. @4#, we
consider the case when the final photon is real and has a
small momentumq8→0, whereas the initial photon momen
tum q is allowed to be virtual and is not necessarily small.
may be seen from Eq.~2.29!, the amplitude ofg* p→gp
with a real final photon is determined by three invariant a
plitudesB1 , B2, andB3,7

TVCS5
1

2
FmnFmn8 B11~PmFmn!~PrFrn8 !B2

1~PnqmFmn!~PsqrFrs8 !B3 . ~4.5!

This equation has a particularly simple form in the pion Br
frame ~PBF! defined byP50—i.e., p52p8—in which the

7The definition ofP of Eq. ~2.6! differs by a factor of 1/2 from
Ref. @27#.
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initial and final pions are treated on a symmetrical footin
Introducing the Fourier components of the electric and m
netic fields as

E5 i ~q0e2qe0!, B5 iq3e,

E852 i ~q08e8* 2q8e08* !, B852 iq83e8* , ~4.6!

we can rewrite Eq.~4.5! in the Breit frame as

TVCS5@~B•B8!B12~E•E8!~B11P2B2!

1~E•q!~E8•q!P2B3#PBF . ~4.7!

In general, even after subtraction of the singular~Born! parts
of the amplitudes, allBi

NB still depend on the photon energie
and the scattering angle and thus describe a series of m
poles and dispersion effects. However, in the limit ofq8
→0, only scalar structure functions depending onq2 sur-
vive:

bi~q2!5Bi
NB~0,0,q2,0!. ~4.8!

These functions yield the non-Born parts of the coefficie
in Eq. ~4.7! which we interpret as generalized electric a
magnetic dipole polarizabilities:

8pMb~q2!5b1~q2!,

8pMaT~q2!52b1~q2!2S M22
q2

4 Db2~q2!,

8pMaL~q2!52b1~q2!2S M22
q2

4 D @b2~q2!1q2b3~q2!#,

~4.9!

where P2 has been taken in the limitq850 as well, i.e.,
P25M22q2/4. If the initial virtual photon has a transvers
polarization in the Breit frame (E5ET'q), the pion re-
sponse to the transverse electric and magnetic fields is d
mined by the~generalized! transverse electric and magnet
polarizabilities:

~TVCS
NB !T58pM @~ET•E8!aT~q2!1~B•B8!b~q2!#

1~higher orders inq8!. ~4.10!

For a longitudinal polarization (E5ELiq) in the Breit frame,

~TVCS
NB !L58pM ~EL•E8!aL~q2!1O~q82!. ~4.11!

In the real-photon limit,q2→0, we have

b~0!5b̄, aL~0!5aT~0!5ā. ~4.12!

All thus defined polarizabilities are functions ofq2 free from
kinematical singularities. In particular, for pion, kaon,
nucleon targets they are regular functions below the tw
pion threshold,q2,4mp

2 , and this region includes all space
like momenta.

We will now interpret aL(q2), aT(q2), and b(q2) by
means of a semiclassical qualitative picture. To that end
3-8
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us consider a system ofn polarizable~neutral! constituents at
positionsra (a51, . . . ,n) with electric polarizabilitiesa i j

a .
We allow the constituents to be anisotropic—i.e., the po
izability tensors are symmetric,a i j

a 5a j i
a , but not necessarily

diagonal (}d i j ). The system will respond to an external ele
tric field E(t,r) by acquiring a dipole moment8

Di~ t !54p (
a51

n

a i j
a Ej~ t,ra!. ~4.13!

Slow oscillations of this dipole moment generate radiation
an outgoing long-wavelength electromagnetic waveE8(t,r)
through the interaction2D•E. For an incoming plane wave
with momentumq—i.e., E(r)5E exp(iq•r)—the amplitude
for a transition to an outgoing plane wave with a very sm
momentum~viz., q8r!1, where r characterizes the sys
tem’s extension! reads

f f i54p (
a51

n

a i j
a exp~ iq•ra!EiEj8 , ~4.14!

wherera5ra2R are the positions of the constituents wi
respect to the center of massR of the system. The continuum
limit of a system with spherical symmetry must be of t
form

(
a51

n

a i j
a exp~ iq•ra!→a i j ~q!

5aL~q!q̂i q̂ j1aT~q!~d i j 2q̂i q̂ j !,

~4.15!

whereaL andaT do not depend on the directionq̂ of q. In
this way we recover the structure of the VCS amplitu
given by Eqs.~4.10! and ~4.11!.

If the system under consideration is exposed to a st
and uniform external electric fieldE8, an electric polariza-
tion P is generated which is related to thedensityof the
induced electric dipole moments:

Pi~r!54p (
a51

n

a i j
a d3~r2ra!Ej8[4pa i j ~r2R!Ej8 .

~4.16!

The tensora i j (r) is nothing else but the Fourier transform
the polarizability tensor of Eq.~4.15!:9

a i j ~r!5E a i j ~q!exp~2 iq•r!
dq

~2p!3
. ~4.17!

If we define

8The factor of 4p is related with the~standard! use of Gaussian
units for the polarizabilities but natural units for charges and fie

9We do not use different symbols for a functionf (t) and its

Fourier transformf̃ (v).
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B~q!5
aL~q!2aT~q!

q2
, ~4.18!

Eq. ~4.15! can be rewritten as

a i j ~q!5aT~q!d i j 1B~q!qiqj ~4.19!

such that the Fourier transformation results in

a i j ~r!5aT~r !d i j 2¹ i¹ jB~r !. ~4.20!

Because ofB5B(r ), the second term of Eq.~4.20! reads

2¹ i¹ jB~r !52S d i j 2
r i r j

r 2 D B8~r !

r
2

r i r j

r 2
B9~r !.

~4.21!

On the other hand, from Eq.~4.18! written in the form
q2B(q)5aL(q)2aT(q), one obtains, for the Fourier trans
form,

2¹2B~r !52B9~r !2
2

r
B8~r !5aL~r !2aT~r !.

~4.22!

EliminatingB9(r ) from Eq. ~4.21! allows one to rewrite Eq.
~4.20! as

a i j ~r!5aL~r !
r i r j

r 2
1aT~r !S d i j 2

r i r j

r 2 D
1

3r i r j2r 2d i j

r 3
B8~r !. ~4.23!

Finally, the last term of Eq.~4.23! is determined by reex-
pressing Eq.~4.22! as

d

dr
@r 2B8~r !#52r 2@aL~r !2aT~r !#, ~4.24!

which, assuming the boundary condition limr→`r 2B8(r )
50, is solved by10

r 2B8~r !5E
r

`

r 82@aL~r 8!2aT~r 8!#dr8. ~4.25!

In other words, given the Fourier transforms

.

10Instead of Eq.~4.25! we could also use

r2B8~r!52E
0

r

r82@aL~r8!2aT~r8!#dr8,

resulting from the boundary condition limr→0r 2B8(r )50. Both re-
sults are identical, because

E
0

`

4pr2@aL~r!2aT~r!# dr[aL~q50!2aT~q50!50,

where we made use of Eq.~4.12!.
3-9
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aL,T~r ![E aL,T~q!exp~2 iq•r!
dq

~2p!3
, ~4.26!

the density of the full electric polarizability of the system
a i j 5(aa i j

a , can be reconstructed as

a i j ~r!5aL~r ! r̂ i r̂ j1aT~r !~d i j 2 r̂ i r̂ j !1
3r̂ i r̂ j2d i j

r 3

3E
r

`

@aL~r 8!2aT~r 8!#r 82dr8. ~4.27!

In this context, it is important to realize that both long
tudinal and transverse polarizabilitiesaL and aT , respec-
tively, are needed to fully recover the electric polarizati
P. The longitudinal polarizability is special, though, becau
it completely specifies the induced polarization charge d
sity of the system,

dr~r!52“•P~r!524p~E8•“ !aL~r !, ~4.28!

where we made use of

¹ ia i j ~r!5¹ jaL~r !, ~4.29!

which follows from Eqs.~4.15! and ~4.17!. Combining par-
tial integration with the divergence theorem, one finds,
the Fourier transform of the induced polarization charge,

dr~q![E dr~r!exp~ iq•r!dr5 iq•P~q!54p iaL~q!q•E8.

~4.30!

Such an induced charge density is the source of a longit
nal electric~Coulomb! field and thus generates an effecti
coupling of the typeEL•E8.

At the same time, the transverse polarizabilityaT de-
scribes rotational displacements of charges which do
contribute todr(r). They can generate electric fields only f
a finite frequency,q085” 0. Therefore, in the limitq08→0 the
effective couplingET•E8 should vanish faster thanEL•E8.
This is indeed the case, as we will see below.

The relation~4.30! suggests an intimate connection b
tween the longitudinal polarizabilityaL and the charge-
density operator of the system. In a forthcoming publicat
we will verify this in a quantum-mechanical and fully rela
tivistic framework.

Similar considerations apply to the magnetic part of
VCS amplitude. In this case the electric polarizabilitiesa i j

a

should be replaced by the magnetic onesb i j
a . Since the mag-

netic induction is always transverse~i.e., B•q50), terms
containingq̂i q̂ j in the magnetic analog of Eq.~4.15! do not
enter any observable and can thus be omitted. Hence
unobservable ‘‘longitudinal’’ magnetic polarizabilitybL(q)
can for all q be chosen to be identical with the transver
one, bT(q) rather than only at the pointq50, where the
equality bL(0)5bT(0) is dictated by analyticity. With this
choiceb i j (q)5b(q)d i j , and the analog of Eq.~4.27! reads
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b i j ~r!5b~r !d i j . ~4.31!

Then the magnetizationM induced by the uniform externa
magnetic field and the corresponding induced electric cur
d j(r)5“3M(r) are, up to an arbitrary gradient, given
terms of the density of the magnetic polarizability as

M~r!54pb~r2R!B8, ~4.32!

where the Fourier transform ofb(r ) is nothing but the gen-
eralized magnetic polarizabilityb(q):

b~r !5E b~q!exp~2 iq•r!
dq

~2p!3
. ~4.33!

Let us conclude this section by recalling that Eq.~4.10! was
obtained by keeping the lowest multipolarities of the fin
~soft! photon. This, however, leads to different powers of t
photon momentumq8 in such an expansion. Forq8→0, the
energy of the initial photon in the Breit frame vanishes
well, becauseq05q08 in that frame. It then follows from Eq
~4.6! that the transverse electric fieldET is of higher order in
q8 than the~transverse! magnetic fieldB. This is also clear
from the relationq2ET52q0q3B. When only terms up to
order O(q8) are retained, the transverse electric field do
not contribute. In order to translate Eq.~4.7! into a power
expansion of the non-Born part of the VCS amplitude up
O(q82), one has to add two more terms proportional
(q•q8)@]B1

NB/](q•q8)#q850 and to a similar derivative of
the functionB11P2B2. These terms introduce an addition
angular dependence and therefore higher multipoles~quadru-
poles!.

The physical process of photon electroproductione(k)
1h→e8(k8)1h81g(q8) consists of the Bethe-Heitler con
tribution, in which the real final photon is emitted by th
initial and final electrons, respectively, and the VCS con
bution. The virtual photon of the VCS part,g(q), is de-
scribed in terms of the polarization vector

em5
e

q2
ūe~k8!gmue~k!, q5k2k8, ~4.34!

which is determined by the electron-scattering kinemat
For q8→0, such anem remains finite. Therefore, the trans
verse electric fieldET5 iq0eT created by the electron trans
tion current is of orderO(q8) in the Breit frame and is sup
pressed in comparison with the magnetic and longitudi
electric fields generated by the current. As an immediate c
sequence the non-Born part of the VCS amplitude to or
O(q8) is characterized bytwo structure functions@viz.,
aL(q2) andb(q2)# rather than by all three functions appea
ing in the dipole approximation.

Although we arrived at this conclusion by considering t
VCS amplitude in the Breit frame@p5(q82q)/2#, it is clear
that two independent structure functions characterize the
plitude to orderO(q8) in any other frame such as, for ex
ample, the center-of-mass~c.m.! frame. This is true becaus
the amplitude itself is Lorentz invariant and at the same ti
3-10
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the real-photon energy,v85uqW 8u, remains of the same orde
O(q8) for any finite Lorentz boost.

The above consideration gives a transparent explana
of the theorem established in Ref.@31#, which states that
there are only two independent structure functions which
termineO(q8) terms in the so-called full amplitudeTFVCS

NB of
virtual Compton scattering for a spin-0 particle in the c.
frame. Here, ‘‘full’’ refers to the fact that the polarizatio
and the intensity of the initial photon are given by Eq.~4.34!.

In terms of the notation introduced by Guichonet al. @4#,
this theorem establishes a linear relation between the
generalized polarizabilitiesP(01,01)0, P(11,11)0, and P̂(01,1)0,
leaving only two of them independent. In the c.m. frame,
transverse electric field is not vanishing, and the above th
rem can be rephrased as establishing a linear combinatio
the EL , ET , andB responses in the c.m. frame which va
ishes whenq850. This is just theET response in the Brei
frame.

The explicit relations between the c.m. polarizabiliti
and the quantitiesaL(q2) and b(q2) appearing at orde
O(q8) read

aL~q2!52
e2

4p
A 3Ec.m.

~2J11!M
P(01,01)0~qc.m.!,

b~q2!52
e2

8p
A 3Ec.m.

~2J11!M
P(11,11)0~qc.m.!, ~4.35!

where Ec.m.5M2q2/(2M ) and qc.m.5A2q21q4/(4M2)
denote the energy and the absolute value of the th
momentum of the initial pion in the c.m. frame at thresho
(q850). The spin factor 2J11 removes a related spin de
pendence hidden in the quantitiesP(r8L8,rL)S and is needed
when our ‘‘pion’’ represents a spin-averaged hadron of s
J5” 0.

When considering the Fourier transforms, the additio
factor ofAEc.m. in Eq. ~4.35! and the use of the Breit-fram
momentum transferqBreit5A2q2 instead of the c.m. mo
mentum transferqc.m. will generate a difference for the spa
tial distributions, especially for such a light particle as t
pion. From the analogy with the well-known case of elect
magnetic form factors, where spatial distributions are
tained using the Breit-frame variables, we expect tha
meaningful Fourier transformation in the case of the gen
alized polarizabilities also requires the Breit frame. Inde
the only difference between the kinematics of the reaction
VCS, g* p→g8p, and the kinematics of the reactiong* p
→p, in which the form factors are studied, originates in t
presence of an additional photong8 which carries a vanish
ing momentumq850.

In analogy to Eq.~2.29!, the structure-dependent effec
as seen in VCS with one~soft or hard! spacelike virtual and
one soft real photon can be encoded in the following eff
tive Lagrangian:
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1

4
b̂1F mnF mnf†f1

1

2
@ b̂2F amFbm

22b̂3F am ]m]nFbn# P̂aP̂bf†f, ~4.36!

whereb̂i are differential operators acting on the electroma
netic fields which are determined by their Fourier comp
nentsbi(q

2) @see Eq.~4.9!#. The above Lagrangian contain
all possible gauge-invariant terms involving at least one fi
strength tensorFmn without derivatives@O(v8)! #.

V. SPATIAL DISTRIBUTIONS
IN CHIRAL PERTURBATION THEORY

A. Preliminary remarks

In accordance with the ideas presented in the previ
section, we now consider the Fourier transforms of
q-dependent polarizabilities, generically denoted byF(q2),
and discuss the corresponding spatial distributionsF(r ).

There is a well-known objection against a straightforwa
interpretation of suchF(r ) as a spatial distribution. The ar
gument is related to the fact that the velocities of the tar
before and after the interaction with the virtual photon d
pend on the photon momentum. If we think of the target a
composite system of, say, quarks we would expect that
matrix element

E c f
†~R8,t8!^R8,t8uOuR,t&c i~R,t!dRdtdR8dt8

~5.1!

of a transition operator likeO5* j m(x)Am(x)d3x for a one-
photon reaction11 depends on both the internal~Lorentz-
invariant! variablest of the pionand on the pion’s center-
of-mass variableR ~cf. Ref. @40#!. Since a relativistic wave
functionc(R,t), in general, does not factorize into a produ
of the type f(t)exp(ip•R), where f(t) denotes a
p-independent internal wave function, some part of the fuq
dependence of the transition matrix element may be rela
with the c.m., partly kinematical effects ofp on f(t). We
come closest to associating the Fourier transformF(r ) of the
full matrix element~5.1! with the internal spatial structure of
the particle by evaluating this matrix element in the Br
frame, in which the pion is at rest on the average—i.e.p
1p850.

There is a simple phenomenological argument sugges
that the generalized magnetic polarizabilityb(q2) defined
according to Eq.~4.9! is indeed only related to the interna
structure. The point is that this quantity is a function ofq2

without kinematical singularities. In other words, any irreg
larity in its q2 behavior is not caused by a Lorentz contra
tion and has nothing to do with singularg factors or with
quantities like P05 1

2 A4M21q2. Moreover, even

11Another example would be O5** j n(x8)An8(x8)
GE(x8,x) j m(x)Am(x)d3xd3x8 involving two currents, whereGE is
the Green function.
3-11
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singularity-free quantities likeP0
25P2 should be irrelevant,

because the momentum scale on which the amplitudeb1(q2)
changes has nothing to do with the particle massM itself and
is fully determined by interactions.

For the other polarizabilities the situation may be mo
complicated. The sumsaL(q2)1b(q2) andaT(q2)1b(q2)
contain an overall factor ofP2 @see Eqs.~4.9!# which, for the
pion, introduces a small kinematical mass scale into theq2

behavior of these sums. So perhaps a more meaningful
sideration of spatial distributions relating toaL(r )1b(r )
and aT(r )1b(r ) is obtained with the factorP2/M2 ex-
cluded fromaL(q2)1b(q2) andaT(q2)1b(q2) before per-
forming the Fourier transformations. In the following discu
sion we will not encounter this problem, because in
theory considered, namely, ChPT at lowest nontrivial ord
either the sumsaL(q2)1b(q2) andaT(q2)1b(q2) are ex-
actly zero@for pions and kaons atO(p4)# or the particle mass
M is considered to be infinite@for baryons in HBChPT at
O(p3)#.

We will illustrate, by means of the more familiar examp
of form factors, that associating a genericF(r ) with the in-
ternal structure of the particle leads to a self-consistent
ture and does not create any visible problems even in
case of such a light particle as the pion, for which the re
tivistic interlace of c.m. and internal variables is maxim
To be specific, we will consider form factors calculated
the framework of ChPT, mainly for two reasons. First, w
want to discuss the generalized polarizabilitiesF(q2) pre-
dicted by thesametheory in order to check that our consid
eration of polarizabilities at scalesr;1/mp is not in conflict
with other observables. Second, at present ChPT is the
tool for describing hadron structure at large scales and
the only theory which agrees with the recent MAMI data
generalized polarizabilities of the proton@11#.

We would like to mention the following technical aspe
concerning the Fourier transformation of aq distribution ob-
tained within ChPT. Such distributions are only reliab
known for small momenta,q5O(mp). Moreover, a straight-
forward integration overq does not exist, because the int
grand typically diverges for large values ofq. We therefore
enforce convergence by introducing a cutoffL. Clearly, such
a cutoff disturbs the correspondingr distributions at dis-
tancesr &1/L which are beyond the scope of ChPT. On t
other hand, one might expect that the results are cutoff in
pendent whenr @1/L. In practice, we make use of a Gaus
ian cutoff and, for anyq-dependent form factor or polariz
ability F(q2), we calculateF(r ) as

F~r !5 lim
L→`

4pE
0

`

F~2Q2!
sin~Qr !

Qr
expS 2

Q2

L2D Q2dQ

~2p!3
.

~5.2!

Depending on how smallr is, we have to chooseL large
enough in order to approach the limit ofL5`. In particular,
for all generalized polarizabilities considered below we ha
found the regularized Fourier integral of Eq.~5.2! to be in-
dependent ofL for L>30 GeV within an accuracy bette
than 2% even at distances as short asr 50.1 fm. Stated dif-
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ferently, the cutoffL530 GeV is sufficient to resolve spatia
distributions of polarizations at scalesr;0.1 fm. In the case
of electromagnetic form factors, having steeper spatial dis
butions ~see below!, the 30 GeV cutoff is sufficient for a
good resolution up to distances ofr;0.2 fm.

There is yet another way of calculating the Fourier in
gral of Eq.~5.2! based on a contour deformation in the com
plex Q plane. This method is applicable when the analyti
continuation ofF(q2) to timelike momenta is known as in
the case of the ChPT predictions. Since all singularities
F(t) are located at real positivet, it is possible to write a
dispersion relation forF,12

F~q2!5
1

pEtmin

`

Im F~ t !
dt

t2q22 i01
, ~5.3!

which allows one to recast the Fourier integral forF(r ) at
r .0 as a superposition of Yukawa functions:

F~r !5
1

4p2r
E

tmin

`

e2rAt Im F~ t !dt. ~5.4!

We made use of both methods and arrived at identical res
for F(r ).

It is worthwhile recalling that polynomial pieces inF(q2)
generated(r ) terms or derivatives thereof in the Fourie
transformF(r ). Such terms typically originate from higher
order counter terms in the Lagrangian which are multipl
by a priori unknown low-energy constants. However, in t
Fourier transform, they do not contribute toF(r ) at finite r
Þ0. In other words, the Fourier integral acts as a filter wh
only transmits genuine effects of pion~or kaon! loops
through their contributions to a nonpolynomial part ofF(q2)
and to ImF(q2), respectively.

B. Form factors

As a first illustration, we briefly discuss the scalar a
vector form factors of the pion as obtained in two-flav
ChPT in the limit of isospin symmetry. These form facto
parametrize matrix elements of the scalar densityS(x)
[m̂@ ū(x)u(x)1d̄(x)d(x)# with m̂5mu5md and the iso-
vector electromagnetic currentj m

V(x)[ 1
2 q̄(x)t3gmq(x), re-

spectively:

^p~p8!uS~0!up~p!&5FS~q2!,

^p1~p8!u j m
V~0!up1~p!&5~p1p8!mFV~q2!, q5p82p.

~5.5!

12Additional subtractions may be required resulting in addition
polynomial contributions.
3-12
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Recently, the one-loop calculations ofFS(q2) andFV(q2) by
Gasser and Leutwyler@41# have been extended to the tw
loop levelO(p6) @42,43#.

In order to simplify the discussion, we perform two su
tractions in the form factorsF(t) and plot the subtracted~and
normalized! functions,

F̄~ t !5
1

F~0! FF~ t !2tF8~0!2
1

2
t2F9~0!G . ~5.6!

By that means we avoid polynomial contributions ofO(p4)
andO(p6), which depend on low-energy constants, and e
phasize the pieces originating from pion loops.13 As stated
before, such subtractions are not visible through the Fou
filter at r .0 and are thus irrelevant for the determination
F(r ).

At O(p4), the subtracted scalar form factor of the pio
reads

F̄S~q2!512
mp

2

16p2Fp
2 F2x21

2
J(0)~x!1

19x2210x

120 G ,
~5.7!

wherex5q2/mp
2 , and the functionJ(0)(x) is defined as14

J(0)~x!5E
0

1

ln@11x~y22y!2 i01#dy5222s lnS s21

s11D ,

s[A12
4

x
, x,0. ~5.8!

As numerical values, we useFp592.4 MeV @47# and the
charged pion massmp5139.6 MeV. The polynomial in Eq
~5.7! results in vanishing first and second derivatives ofF̄S at
t50.

At one-loop order, the subtracted vector form factor is
a similar form:

F̄V~q2!512
mp

2

16p2Fp
2 S x24

6
J(0)~x!1

3x2220x

180 D .

~5.9!

At the two-loop level, the scalar and vector form factors a
given by more lengthy expressions which can be found
Refs. @42,43#. To be specific, we made use of Eqs.~3.6!–
~3.8! and ~3.16!–~3.18! of Ref. @43#, using the parameter
~low-energy constants! l̄ 1521.7, l̄ 256.1, l̄ 352.9, l̄ 4

54.472, l̄ 6516.0 ~set I @43#!.
For comparison, we discuss as another example the

vector electric form factor of the nucleon,GE
V(q2), to leading

13Alternatively, we could keep the polynomial contribution of th
pion loops. However, in that case the result would still depend
the renormalization condition chosen.

14The results for 0<x,4 and 4,x are obtained by analytica
continuation.
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nontrivial order@O(p3)# within HBChPT @44,45#. With the
above two subtractions one obtains15

ḠE
V~q2!512

mp
2

16p2Fp
2 S x24

6
J(0)~x!1

3x2220x

180 D
2

mp
2 gA

2

16p2Fp
2 S 5x28

6
J(0)~x!1

21x2240x

180 D ,

~5.10!

wheregA51.267 is the axial-vector coupling constant.
The scalar form factor of the nucleon and the correspo

ing spatial distribution were recently discussed by Robilo
@46# in the context of the two-pion-exchange contribution
the NN potential~see Fig. 8 of that reference!.

n

15In this case one subtraction would be sufficient to remove lo
energy constants. Note that the functionsJ(q2) andz(q2) used in
Ref. @44# are related with the functionJ(0)(x), Eq. ~5.8!, by
16p2z(q2)52J(0)(x) and (96p2/mp

2 )J(q2)522x/31(x
24)J(0)(x).

FIG. 1. Left panels: the~twice-subtracted! scalar and vector
form factors of the pion in ChPT at orderO(p6) @43# and the
isovector charge form factor of the nucleon in HBChPT at ord
O(p3) @44,45#. Right panels: corresponding spatial distributions o
tained as Fourier transforms. Dashed lines: one-loop predict
Solid lines: two-loop prediction~for pions only!. Dotted lines: pre-
diction of the pole dominance model due to a scalar or vector
son of mass 770 MeV.
3-13
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In Fig. 1 we show the three form factorsF̄(q2) of Eqs.
~5.7!, ~5.9!, and~5.10! and their corresponding Fourier tran
forms F(r ) which, in the case ofF5FV and F5GE

V , are
interpreted as the electric charge density.16 For the sake of
comparison we also present the results of a pole approx
tion to those form factors,

F~q2!5
m2

m22q2
, 4pr 2F~r !5m2re2mr, ~5.11!

with the mass scalem5770 MeV arbitrarily chosen to be th
r-meson mass.

As a first observation, we note that all spatial distributio
considered are positive at the one-loop order. Such a pos
sign confirms a~maybe too! naive understanding of the pe
ripheral structure of the target as being created by a clou
virtual pions which create, in the case of ap1 or proton
target, a positive electric charge density of finite size. A
the scalar density seen by an external scalar field carri
positive sign. The QCD coupling of an external scalar fie
s̃(x) to the scalar densityS(x),

Lext52m̂@ ū~x!u~x!1d̄~x!d~x!# s̃~x!, ~5.12!

is described through the Lagrangian1
4 F2 Tr(xU†1Ux†) at

lowest order in ChPT, where, in the present case,x

5mp
2 s̃(x). InsertingU5(s1 i t•p)/F, the lowest-order in-

teraction reads

Lext
eff52

1

2
mp

2 p2~x!s̃~x![2Seff~x!s̃~x!. ~5.13!

Thus,Seff(x) has manifestly positive matrix elements whic
when probed throughs̃ as part of the pion cloud, lead to
positive density.

When two-loop corrections are taken into account,
spatial distributions at small distances,r &1 fm, change dras-
tically. In particular, the charge densityFV(r ) of the pion
which at the one-loop level was concentrated atr &0.3 fm,
now extends up tor;0.6 fm. An even more dramatic effec
is observed for the scalar densityFS(r ), which due to the
two-loop contribution changes sign atr &0.7 fm. However,
one should keep in mind that ChPT is a low-energy effect
field theory and it is likely that higher-order corrections w
change the spatial distributions at short distances subs
tially. An indication for such a scenario is given by the do
ted lines in Fig. 1 which refer to short-range mechanis
such as vector mesons. Of course, such mechanisms are
included in ChPT by means of low-energy couplings in t
effective Lagrangian.

Finally, let us emphasize again that the above exam
do not pretend toprovethat spatial distributionsF(r ) have a

16Analytical representations ofF(r ) in ChPT at one-loop orde
are given in the Appendix.
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strict operational sense. However, they certainly sugge
simple intuitive picture of the hadron periphery which is t
natural domain of ChPT.

C. Polarizabilities

We now extend the discussion to spatial distributions
sociated with the generalized polarizabilities as introduced
Sec. IV. The predictions for the generalized dipole polar
abilities aL(q2) andb(q2) of the nucleon in the framework
of SU(2)f HBChPT atO(p3) read@21,48#

aL~q2!5Ep
2 E

0

1

@8s21smp
2 ~16y2216y19!

23mp
4 ~2y21!2#

dy

32s5/2

5
Ep

2

8mpa~a11! F ~a11!~2a21!

3
arctanAa

Aa
12a11G ,

b~q2!5Ep
2 E

0

1

~2y21!2~s1mp
2 !~4s23mp

2 !
dy

16s5/2

5
Ep

2

16mpa~a11! F ~a11!~2a11!

3
arctanAa

Aa
22a21G , ~5.14!

where s5mp
2 1q2(y22y), a52q2/(4mp

2 ), and Ep

5egAA2/(8pFp) is the Kroll-Ruderman amplitude ofp6

photoproduction in the chiral limit.17

The transverse electric polarizability of the nucleon
mains yet to be determined.

There are no published calculations of the nucleon’s g
eralized polarizabilitiesaL(q2) and b(q2) within SU(3)f
HBChPT, except for the caseq250 considered in Refs
@49,50#. However, it is straightforward to extend the resu
of Eq. ~5.14! to the SU(3)f case in the limit of equalN, L,
and S masses. In this limit, thesquarebaryon-octet mass
differences is considered as small in comparison with
square kaon mass,mK

2 , which empirically is a good approxi
mation. Then, the structure of Feynman diagrams contrib
ing to Compton scattering in the SU(3)f and SU(2)f cases,

17The integral representations of Eq.~5.14! are, of course, less
convenient than the equivalent elementary formulas. They are g
here only as a historical reference, in the form in which they w
first calculated and reported@48#. The same results were found in
dependently by the authors of Refs.@19–21#. Recently, results have
also been given in the framework of the small-scale expansion
cluding theD isobar as a dynamic degree of freedom@21#.
3-14
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respectively, is very similar, the only difference resulting~a!
from different meson-baryon couplings for charged mes
~or, stated differently, from different Kroll-Ruderman amp
tudes! and~b! from different masses of the Goldstone boso
entering the appropriate loop diagrams. The generalized
larizabilities of the nucleon in SU(3)f HBChPT receive, in
addition to the results of Eqs.~5.14!, contributions due to
kaon loops which are given by the same expressions a
Eqs. ~5.14! after the replacementsmp→mK and Ep→EK ,
where

Ep
2 [EKR

2 ~gN→p6N!5S eA2

8pFp
D 2

I p ,

EK
2 [EKR

2 ~gN→K1L!1EKR
2 ~gN→K1S!5S eA2

8pFK
D 2

I K ,

~5.15!

and

I p5gA
25~D1F !2, I K5H 2

3
D212F2, proton,

~D2F !2, neutron;
~5.16!

cf. @49,50#. In anO(p3) calculation, the difference betwee
the pion and kaon decay constants is of higher order. E
pirically, FK.1.22Fp @47#, but in our numerical analysis w
make use of a universal valueFK5Fp with Fp592.4 MeV.
Furthermore, we insert the SU(3)f ratio F/D52/3.

By applying the same procedure to the other octet ba
ons, one obtains a generic polarizabilityF(q2) as

F~q2!5@Eq. ~5.14!#3
I p

gA
2

1@Eq. ~5.14!#mp→mK
3

I K

gA
2

.

~5.17!

The SU(3)f coefficientsI p andI K are identical with the ones
given in Eq.~4! of Ref. @49# for the caseq250. For conve-
nience, we collect these coefficients in Table I~using F/D
52/3). Note, however, that the pion-loop contribution forL
andS6 is perhaps not given very accurately by this proc

TABLE I. Flavor coefficientsI p and I K determining pion and
kaon loop contributions to the generalized polarizabilities of oc
baryons in SU(3)f HBChPT at orderO(p3).

B Ip I p /gA
2 I K I K /gA

2

p (D1F)2 1.00 2
3 D212F2 0.56

n (D1F)2 1.00 (D2F)2 0.04
L 4

3 D2 0.48 1
3 D213F2 0.60

S1 2
3 D212F2 0.56 (D1F)2 1.00

S0 4F2 0.64 D21F2 0.52
S2 2

3 D212F2 0.56 (D2F)2 0.04
J0 (D2F)2 0.04 (D1F)2 1.00
J2 (D2F)2 0.04 2

3 D212F2 0.56
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dure, since the baryon mass difference in the transiti
p6L↔S6 is not fully negligible in comparison with the
pion massmp .

At O(p4), SU(2)f and SU(3)f ChPT predictions for all
three dipole polarizabilitiesaL(q2), aT(q2), andb(q2) have
been reported for pions and kaons@27,28#. At that order, the
three generalized dipole polarizabilities are degenerate,

aL~q2!5aT~q2!52b~q2! and aL~r !5aT~r !52b~r !,
~5.18!

and hence we only need to discuss, say, the generalized
netic polarizability which can be expressed as@28#

2b~q2!5
e2

4pM

1

~4pFp!2
@A1~Bp1Cpxp!J(0)8~xp!

1CKxKJ(0)8~xK!#. ~5.19!

Here,M is the mass of the particle in question,

xp5
q2

mp
2

, xK5
q2

mK
2

, ~5.20!

the functionJ(0)8(x) is given by

J(0)8~x!5
J(0)~x!

dx
5

2J(0)~x!1x

x~x24!
, ~5.21!

and A, Bp , Cp , and CK are constants given below. Th
terms in Eq.~5.19! depending onxp and xK represent con-
tributions of pion and kaon loops, respectively. T
q2-independent term proportional toA originates from a con-
tribution at short distances represented by low-energy c
stants in the effective chiral Lagrangian@51#:

A~p6!5A~K6!564p2~L9
r 1L10

r !5
2FA

FV
50.9060.12,

A~p0!5A~K0!5A~K̄0!50. ~5.22!

The numerical value ofA(p6) is fixed @52# by the experi-
mentally known axial (FA) and theoretically known vecto
(FV) form factors of the radiative pion decayp1→e1neg
using FA /FV50.44860.062 @47#. The relation A(p)
5A(K) is valid in the SU(3)f-symmetry limit. The other
constants entering Eq.~5.19! are flavor-dependent coeffi
cients which determine contributions of pion and kaon loo
respectively:

Cp5H 21 for p0,

21/2 for p6,

21/4 for kaons,

Bp5H 1 for p0,

0 otherwise,

CK5H 21/2 for K6,

21/4 otherwise.
~5.23!

t
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The generalized polarizabilities of the Goldstone bosons
shown together with the results for the proton, theS2, and
the J2 in Figs. 2 and 3.

The spatial distributions calculated as the Fourier tra
forms of the generalized polarizabilities are shown in Figs
and 5. The corresponding analytical results obtained thro
Eq. ~5.4! are given in the Appendix. For larger, the pion and
kaon loop contributions to a generic polarizabilityF(r ) fol-
low an exponential behaviore22mpr and e22mKr , respec-
tively, as determined by the nearest singularities ofF(q2) for
timelike momenta,q254mp

2 andq254mK
2 . Thed singular-

ity at r 50 cannot be seen in these plots. However, at le
for mesons, such a singularity exists for sure within ChP
and it is determined by the asymptotic value of the pola
ability for q2→2`. Thus, the integrals of the spatial distr
butions overr .0 are

lim
e→01

E
e

`

4pr 2b~r ! dr5b~q250!2b~q252`!.

~5.24!

The generalized polarizabilities of the octet baryons, giv
by Eqs.~5.14! and~5.19!, vanish at infinity, so that the inte
gral ~5.24! gives justb̄ in this case. This is not the case fo
mesons, sincexJ(0)8(x)→1 for x→2`. The corresponding
d singularity in 4pr 2b(r ) is driven by the limits@53#

lim
q2→2`

bp6~q2!5b̄p61
9

2
b̄p0,

lim
q2→2`

bp0~q2!5
15

2
b̄p0,

FIG. 2. Generalized magnetic polarizabilityb(q2) of pions and
kaons atO(p4) @27,28#. Dashed lines: contribution of pion loops
Solid lines: contribution of pion and kaon loops. Dotted line

vector-meson dominance~VMD ! predictions normalized tob̄ as
given by SU(3)f ChPT.
01520
re

-
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st
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:

FIG. 3. Generalized longitudinal electric and magnetic polar
abilities aL(q2) and b(q2) of the proton, theS2, and theJ2 at
O(p3) ~see@21,48# and the text!. Dashed lines: contribution of pion
loops. Solid lines: contribution of pion and kaon loops. Dott

lines: VMD predictions normalized toā andb̄ as given by SU(3)f
ChPT.

FIG. 4. Density of the magnetic polarizabilityb(r ) of pions and
kaons atO(p4). The d singularity atr 50 is not shown@see the
discussion of Eq.~5.24! in the text#. Dashed lines: contribution o
pion loops. Solid lines: contribution of pion and kaon loops. Dott

lines: VMD predictions normalized tob̄ as given by SU(3)f ChPT.
3-16
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lim
q2→2`

bK6~q2!5b̄K61
9

2

mp

mK
b̄p0,

lim
q2→2`

bK0~q2!53
mp

mK
b̄p0. ~5.25!

The SU(2)f results for pions are found in Eqs.~39! and~40!
of Ref. @27#.

It is very interesting that the loop contributions beha
exactly as one would expect from a classical interpretation
the Langevin diamagnetism. In such a picture, a chang
the external magnetic field would produce circulating c
rents induced in the charge density of the meson cloud wh
on their part give rise to an induced magnetization. Both p
and kaon clouds are seen to be diamagnetic, at least at
distancesr *1/mp . Simultaneously, these clouds generat
positive sign for the electric polarizability. However, in th
case of the nucleon the diamagnetic character of the p
cloud disappears at distancesr &1/mp , where paramagnet
ism prevails andb(r ) becomes positive.

When a hadron is probed by photons of very small~space-
like! momentauqu!mp , the magnetic response is essentia
only sensitive tob(q250)5b̄. When the momentumuqu

FIG. 5. Density of the longitudinal electric and magnetic pol
izabilities aL(r ) and b(r ) of the proton, theS2, and theJ2 at
O(p3). Dashed lines: contribution of pion loops. Solid lines: co
tribution of pion and kaon loops. Dotted lines: VMD prediction

normalized toā and b̄ as given by SU(3)f ChPT.
01520
f
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-
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increases, the very peripheral, negative part of the magn
polarizability of the pion cloud no longer contributes to

b~q2!5E b~r !exp~ iq•r!dr, ~5.26!

due to the oscillatory behavior of the integrand for lar
distances. This explains why the magnetic polarizabi
b(q2) for all the particles~pions, kaons, nucleons, etc.! uni-
versally gets a positive increase~see Figs. 2 and 3!. The
slope of b(q2) at the origin is proportional to the mea
square radius of the spatial distribution,

db~0!

dq2
5

2p

3 E
0

`

r 4b~r !dr. ~5.27!

Obviously, for all mesons, the cloud distribution 4pr 2b(r )
<0 for all r>0. Hence, the slope is negative as a function
q2 ~positive, when plotted against2q2). Also, the curvature
as a function ofq2 is concave. For the proton, theS2, and
the J2 the asymptotic negative pion and kaon tails in t
integral ~5.27! dominate over the positive contribution com
ing from distances smaller than 1 fm, 1 fm, and 0.4 f
respectively. This makes the slopes of the magnetic pola
ability of all baryons considered positive as a function o
2q2 as well. On the other hand, such behavior is in so
cases opposite to that expected from VMD. Suppose theq2

dependence ofb(q2) was determined by ther or v mesons
mediating electromagnetic interactions,

@b~q2!#VMD5b̄
mr

2

mr
22q2

. ~5.28!

From this, the spatial distribution ofb(r ),

@4pr 2b~r !#VMD5mr
2re2mrr b̄, ~5.29!

would have the same sign asb̄ for all r .0. For thep0 and
for the octet baryons, having positiveb̄, such a sign is in
conflict with the ChPT behavior~see Figs. 3 and 5 in which
the VMD distributions are also shown!. From a phenomeno
logical point of view, the full magnetic polarizabilityb̄ of
the neutral pion should be approximately 3 times theO(p4)
prediction, mainly due to a paramagnetic contribution of t
M1 transitionsp0→v or r0. In other words, a more realisti
VMD curve should be 3 times higher than that shown in F
4, so that the above conflict with ChPT would be even m
severe.

In the case of the~longitudinal! electric polarizability of
octet baryons the long-range, peripheral part is suppres
with increasing2q2. This part is relatively large for all bary
ons except for theJ ’s, and thusaL(q2) shows a rapid de-
crease with increasing spacelikeq which is steeper than fo
VMD ~see Fig. 3!.

Another instructive feature of the plots shown in Figs.
and 5 is that the kaon-loop contribution is concentrated
about the same scale ofr ~or even at smaller scales! as the
VMD contribution due to the large mass of kaon pai

-
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2MK'1 GeV. Kaon-loop contributions exactly fall into th
short-range region where one finds other contributions
similar range treated via low-energy constants of the eff
tive Lagrangian of ChPT. However, atO(p3) no such
counter terms contribute to the generalized polarizabilit
In other words, even though the relevant counter terms
formally of higher order in the power counting of ChPT, o
may wonder whether their quantitative importance is und
rated as compared to the kaon-loop contributions. Theref
quantitative conclusions drawn from calculations keep
kaon loops and ignoring short-range contributions have to
treated with some care. For a similar conclusion, see R
@54#.

The spatial distribution ofb(r ) for the nucleon shown in
Fig. 5 may also shed light on an old question which h
remained open for more than 30 years: Why is the magn
polarizability b̄ of the proton so small (b̄p'231024 fm3

@47#! despite a very large paramagnetic contribution of theD
resonance which, in various evaluations based on qu
models, dispersion theories, effective Lagrangians, e
ranges from17 to 11331024 fm3 ~see, for example
@55,56#!. In this context, it is sometimes stated that the p
cloud produces a large diamagnetic~i.e., negative! contribu-
tion to b̄ owing to the Langevin mechanism producing
negative magnetic susceptibility of bound charges. T
point of view became especially popular after calculations
b̄N in the Skyrme model~see, for example@57–59#!, in
which the pion field of the soliton produces indeed a very
diamagnetic susceptibility resulting from the pion-cloud t
of the soliton, ranging from28 to 21631024 fm3 @57–59#.
Figure 5, however, shows that the pion-cloud periphery w
r>1 fm carries a very small diamagnetism of only20.45
31024 fm3, where the last number is expected to be a r
able estimate because ChPT, even at leading nontrivial o
should be reasonable at such distances. We conclude
Skyrme models overestimate the pion-cloud contribution
diamagnetism and that a source for the missing diamag
tism is probably related to short-range mechanisms ra
than with the pion cloud itself. In some dispersion theories
Compton scattering@60#, an additional exchange with a hy
potheticals meson is invoked in order to generate agreem
with existing experimental data. This, of course, is just
oversimplified model for such a short-range contribution.

It would be very interesting and instructive to extend t
presently available ChPT predictions for the generalized
larizabilities of the nucleon at least to orderO(p4). This
would allow one to check whether a modification of the de
sity b(r ), including relativistic~nucleon recoil! effects and
other higher-order corrections, indeed provides suffici
diamagnetism@56#.

VI. SUMMARY AND CONCLUSIONS

In the present paper we have developed a covariant
malism leading to a parametrization of the VCS tensor
terms of Lorentz invariants free from kinematical singula
ties and constraints. We motivated and performed a gau
invariant division of the VCS tensor into contributions
01520
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generalized Born terms and a structure-dependent resi
part. We then discussed the case of a real final photon a
spacelike virtual initial photon which can be described
terms of three invariant amplitudes depending on three k
matical variables. In the limitq8→0, the three residual am
plitudes reduce to functions ofq2 only which we identified
as generalized dipole polarizabilitiesaL(q2), aT(q2), and
b(q2). All of them can, in principle, be determined in virtua
Compton scattering, although the transverse electric pola
ability is not accessible in experiments sensitive to structu
dependent effects ofO(q8) only. We proposed a physica
interpretation of these polarizabilities in terms ofspatialdis-
tributions of an induced electric polarization and magneti
tion, respectively. In particular, we argued that a knowled
of all three polarizabilities is required for a full description
induced polarization phenomena. Following this line, we c
culated spatial distributions for pions, kaons, and the bar
octet as Fourier integrals, using the predictions of ChPT
was found that the distributions obtained confirmed expe
tions based on a picture of a hadron’s periphery caused
‘‘classical’’ pion cloud. Of course, any practicalanalysisof
experimental data on photonscatteringwill eventually deal
with the original, precisely defined momentum-space fo
factors, polarizabilities, etc. Thus, one should handle
found spatial distributions with care. On the other hand,
r-space interpretation of suchq-dependent quantities clearl
allows for a more intuitive visualization in analogy to th
phenomenology and terminology of classical electrodyna
ics and nonrelativistic quantum mechanics.
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APPENDIX: SPATIAL DISTRIBUTIONS TO ONE LOOP

In this appendix we collect the analytical results for t
spatial distributions in ChPT at the one-loop level which a
easily obtained through Eq.~5.4!. In the formulas below we
use the notation

t5q2, xp5
t

mp
2

, xK5
t

mK
2

, zp52mpr , zK52mKr .

~A1!

The imaginary parts of the scalar and vector form factors
the pion and of the isovector charge form factor of t
nucleon are determined by the functionJ(0)(x) which has a
branching point atx54:

Im FS~ t !5FS~0!
2xp21

2
V~xp!,
3-18
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Im FV~ t !5
xp24

6
V~xp!,

Im GE
V~ t !5S xp24

6
1gA

2 5xp28

6 DV~xp!, ~A2!

where

V~x!5
p

~4pFp!2
Ax24

x
u~x24!. ~A3!

Evaluating the integral representation of Eq.~5.4! with the
above imaginary parts results in

4pr 2FS~r !5
mp

3 FS~0!

~4pFp!2 F48

zp
K0~zp!1

96114zp
2

zp
2

K1~zp!G ,

4pr 2FV~r !5
mp

3

~4pFp!2 F 8

zp
K0~zp!1

16

zp
2

K1~zp!G ,

4pr 2GE
V~r !5

mp
3

~4pFp!2 F8140gA
2

zp
K0~zp!

1
161~8018zp

2 !gA
2

zp
2

K1~zp!G , ~A4!

where Kn(z) is the modified Bessel function,Kn(z)
5*0

`e2z cosht cosh(nt)dt.
The generalized polarizabilities of the nucleon, Eq.~5.14!,

at timelike momentaq have both a cut starting att54mp
2

and a pole att54mp
2 :

Im aL~ t !5
p

8
Ep

2 F S 21
4mp

2

t D u~ t24mp
2 !

At

14mpd~ t24mp
2 !G ,
c

s.

.

015203
Im b~ t !5
p

16
Ep

2 F S 22
4mp

2

t D u~ t24mp
2 !

At

24mpd~ t24mp
2 !G . ~A5!

Accordingly, Eq.~5.4! results in

4pr 2aL~r !5
Ep

2

2 F ~11zp!e2zp1
zp

2

2
Ei~2zp!G ,

4pr 2b~r !5
Ep

2

4 F ~12zp!e2zp2
zp

2

2
Ei~2zp!G , ~A6!

where Ei(2z)52*z
`(e2t/t)dt is the exponential integral

The contribution of kaon loops is obtained by the subst
tions Ep→EK andmp→mK as explained in Sec. V.

For pions and kaons, the generalized polarizabilities
Eq. ~5.19! have branching points att54mp

2 and 4mK
2 but no

poles:

Im b~ t !5
e2

4pM

2p

~4pFp!2 F S Bp

xp
1CpD u~xp24!

Axp
2 24xp

1CK

u~xK24!

AxK
2 24xK

G . ~A7!

Then Eq.~5.4! gives

4pr 2b~r !5
e2

4pM

1

~4pFp!2 F2mpCpzpK0~zp!

12mKCKzKK0~zK!1
mp

2
Bpzp

2

3S K1~zp!2E
zp

`

K0~x!dxD G . ~A8!
,
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