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Abstract. The possibility to obtain information on 7n scattering at intermediate 
energies from the reaction vd--. ?'np is analyzed. To this aim, the differential 
cross section d36/d~r, df~n dE,, and the scattering asymmetry with linearly polar- 
ized photons are calculated at photon energies 100 to 400 MeV in the diagram- 
matic approach. The pole diagrams of the impulse approximation are evaluated 
with realistic 7n and 7P scattering amplitudes. One-loop diagrams with np 
rescattering in the final state and with meson-exchange and isobar currents are 
taken into account as well. The main contribution to the differential cross section 
d3a/d~,,  d~  n dE n in the kinematics of quasi-free 7n scattering arises from the 
neutron pole diagram. The correction due to other diagrams is typically - 3 0 ~  
to - 10~ and decreases with increasing photon energy and momentum transfer. 
The sensitivity of the cross sections to the magnitude of the neutron electric 
polarizability and to the sign of the n ~ --. 27 decay constant is demonstrated. 

1 Introduction 

Up to recent years, the elastic photon scattering by neutrons (hereafter simply "Tn 
scattering") at low and intermediate energies has never been studied experimentally. 
Both the lack of dense neutron targets and the absence of advanced theoretical 
analyses of photon scattering by neutrons bound in nuclei prevented to do this. The 
very first (though indirect) data on vn scattering have been obtained by the G6ttingen- 
Mainz group [1]. They measured the differential cross section of the reaction 

y + d--, y' + n + p (1) 

in the neutron quasi-free peak region smeared over the energy interval of E.r ,-~ 80- 
130 MeV and found the following value for the neutron electric polarizability, 

| / ~  , /+3 .3  
~. . . . . . .  ,0 .7 ,  (2) 

in the units of 10 -4 fm 3 used for the polarizabilities throughout the paper. The 
uncertainties in (2) were smaller than those in results obtained in earlier investiga- 
tions of neutron scattering by nuclei [2-6]. The possibility to determine the polar- 
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izability ~. from the data on inelastic photon-deuteron scattering (1) has been 
pointed out in the work [7], in which the differential cross section daa/d~< df~, dE, 
of the reaction (1) has been calculated in the distorted-wave impulse approximation 
within the diagrammatic approach [8, 9]; it has been shown to be sensitive to the 
hadron structure parameters involved through the subprocess of yn scattering, in 
particular to the neutron polarizability ~, and the relative sign of nNN and n~ 
coupling constants. 

Generally, one can expect a close similarity between mechanisms of 7n scattering 
and those of the much better studied Vp scattering, especially near the nucleon 
resonances. However, there are some important differences that deserve a special 
experimental investigation. For example, due to the absence of the Thomson term 
in the low-energy vn scattering amplitude, the corresponding differential cross 
section is very sensitive to the contribution of t-channel n~ at energies 
below the pion photoproduction threshold. If the n~ constant F~%~ has a 
standard sign, which is opposite to the sign of the zcNN coupling constant, 9~NN, the 
contribution of the n~ increases the differential cross section of backward 
yn scattering by -,~ + 100% at the photon energy of about 100 MeV, whereas it 
provides the change of only ~ -  10% in the case of Vp scattering [10]. Hence, data 
on vn scattering enable one to determine the relative sign of F~o~ and 9~uN, which 
is still under discussion in the literature, see ref. [11] and references therein. 'Also, 
the nucleon polarizabilities manifest themselves in a different way in 7n and Vp 
scattering. The corresponding low-energy structure correction to the differential 
cross section is proportional to E~ in the case of neutron and to E~ for the proton 
[10, 12]. 

Nowadays, the interest in measuring the electric (00 and magnetic (fl) polar- 
izabilities of stable hadrons such as N, n, K, Z is noticeably increasing due to 
understanding of their significance for selecting realistic constituent and quantum- 
field models of nonperturbative QCD, see, e.g., refs. [12-18]. Until recently, only 
polarizabilities of the proton and charged pion have been measured. For a long time 
the attempts to determine the neutron electric polarizability ~, in experiments on 
low-energy neutron scattering by heavy nuclei, i.e. to reveal the polarization interac- 
tion V p~ = -21-~XnE 2 of the neutron with the nuclear Coulomb field E, were unsuc- 
cessful. The troubles were in precisely measuring the neutron-scattering cross sec- 
tions and, second, in reducing uncertainties in the background caused by the strong 
neutron-nucleus interaction. The upper limits found in earlier experiments, e.g. 
I~.1 ~< 60 in ref. [2], were essentially higher than the theoretical estimate [12] 

~. ~- 11 _+ 3, (3) 

based on dispersion sum rules. Only recently, very precise measurements [3-5, 19] 
of the neutron transmission cross section of Pb and Bi have been performed, and 
the best data by the Vienna-Oak Ridge group for the pure isotope 2~ [19] 
resulted in the following value of the neutron polarizability 

~xp 12.0 + 1.5 (stat) + 2.0 (syst). (4) 
O n  = - -  - -  

Note that the so-called static polarizability ~o. has been found in ref. [19]. To obtain 
the "generalized static" polarizability ~, relevant to the present and most other 
applications, a small relativistic correction A~. = 0.62 must be added to ~0n, SO that 
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an ~xp = 12.6 __+ 1.5 (stat) + 2.0 (syst). (5) 

The value (5) is in agreement with Eq. (2) and the theoretical estimate (3) and is also 
close to the proton electric polarizability, n~xp ,,~ 11 [20-24]. According to disper- 
sion theory [12], a small difference a n - c~p ~ 2 can be expected as being due to the 
nucleon recoil while exciting the pionic cloud of the nucleon by a probe. 

Calculations within the cloudy bag model [13] show that the contribution of 
the pion cloud to the nucleon electric polarizability a N is more than that of the quark 
core, provided the core radius is R~ ~ 0.5 to 0.6 fro, what is necessary to have, e.g., 
a realistic excitation spectrum of the core. The dominating role of pions in the electric 
polarizability a N is supported also by calculations within the dispersion approach 
[25] and chiral perturbation theory [16]. However, all constituent models have 
difficulties with the description of the paramagnetic and diamagnetic parts o f /~ ,  
see, e.g., ref. [18]. Further, more accurate measurements of the nucleon polar- 
izabilities in experiments on 7n and 7P scattering below the pion threshold could 
shed more light on the relative role of quark and mesonic degrees of freedom in the 
nucleon structure at intermediate range, where the predictive abilities of QCD are 
limited. 

Recently, uncertainties related to the strong neutron-nucleus interaction were 
suspected [26] as being underestimated in refs. [3, 4, 19] when a n was extracted from 
nA scattering data. So, further more accurate studies of 7n scattering are worth 
pursuing to get independent information on ~ .  

Further investigations of ~,n scattering are desirable also for other reasons. We 
mean here that the detailed knowledge of ~n and 7P scattering amplitudes is needed 
for a consistent interpretation of data on photon scattering by nuclei and for studies 
of bound nucleons and meson-exchange currents as seen in two-photon reactions. 

In principle, ~,n scattering could be studied by the method used already for ~rc- 
scattering [27, 28], i.e. through the Primakoff effect in the radiative scattering of 
multi-GeV neutrons by nuclei [29]. Such a way, however, is hardly feasible at the 
moment because it needs a high-collimated intense neutron beam. A more natural 
possibility to obtain data on 7n scattering is provided by the reaction (1). If the 
proton gets in this reaction a small momentum pp and hence is a spectator, the 
reaction amplitude is dominated by the neutron pole diagram. Correspondingly, 
the differential cross section d4a/df~,, d 3 pp has a peak at small pp (this is the neutron 
quasi-free peak, NQFP) and, in the peak region, is essentially proportional to the 
differential cross section of 7n scattering [7]. 

In the present paper we extend the calculations of our earlier work [-7]. We 
include now the np rescattering in the final state in P- and D-waves, apart from the 
previously considered S-wave rescattering. Also, the realistic N N  potential (Paris) 
[30, 31] is used for finding the rescattering T-matrix. We consider corrections due 
to meson-exchange and isobar currents (MEC and IC) as well and evaluate them 
by using the Blomqvist-Laget model of the photo-pion reactions on nucleons [32]. 
Generally, the diagrammatic method used here to take into account the final-state 
interaction, MEC, and IC works successfully in many applications to the processes 
"yd -o np, 7d --* rcNN, etc. [33, 34]. 

While evaluating individual diagrams, realistic on-shell 7N scattering ampli- 
tudes are used instead of the blocks with two photon and two nucleon external lines. 
Such amplitudes have been calculated at E~ ~< 400 MeV with the help of relativistic 
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finite-energy dispersion relations [10]. The amplitudes depend on one free or, at 
least, poorly known parameter linearly related with the difference of the nucleon 
polarizabilities aN - fiN, which thereby becomes the aim of fitting the experimental 
data. At the same time, the sum of the polarizabilities, aN + fiN, is not varied because 
it is calculated rather reliably in dispersion theory [12-1: 

o~,, + fl, ~- 15.8 -t- 0 . 5 ,  ~p + tip ~_ 14.2 +_ 0.5. (6) 

The content of the present paper is as follows. The main kinematic relations and 
general formulae are introduced in Sect. 2. In Sects. 3-5, the contributions of 
individual diagrams to the amplitude of the reaction (1) are discussed. The numerical 
results are presented in Sect. 6, Sect. 7 is devoted to concluding remarks. 

2 Kinematics 

We discuss here the kinematics of the reaction (1) for the case of the deuteron being 
at rest and keeping in mind the following applications to the quasi-free ~n scatter- 
ing in which the proton has a small momentum and is not detected under usual 
experimental conditions. We denote by p~, Pd, P~', Pn and pp the 4-momenta of the 
initial and final particles of the reaction (1). The energy-momentum conservation, 

Er + E d : E~, + Ep + En, pr = pr, + pp + p,, (7) 

where E N are nucleon kinetic energies and - E  d = A = 2.2246 MeV is the deuteron 
binding energy, enables one to determine the momentum of the spectator proton 
provided both directions of the scattered photon (0r,, ~br,) and neutron (0 n, ~bn) and 
two of three energies Er, E~, and E n are known. For example, by measuring the 
energies of the final photon and neutron and their angles, one can find the initial 
photon energy from Eq. (7) as 

E~ Er,(m - A - E ,  + IPn[ cos 0r,n) + (2m -- A)(E n + �89 
= m - A - En + IP.I cos 0n - E~,(1 - cos 0~,) (8) 

Here 0~, n is the angle between pr, and Pn, m is the nucleon mass, and the polar z-axis 
is chosen along the initial photon beam. Then the proton momentum is recon- 
structed through relation (7). Similarly one finds E~, if the energy Er is known, e.g., 
due to the use of tagged photons. 

We shall further see that the contribution to the reaction amplitude from the 
subprocess of Tn scattering depends on Epas ~ (2Ep + A) -1, thus resulting in a peak 
at small Ep in the differential cross section, which is clearly seen if E n >> A. The region 
of the N Q F P  is qualitatively characterized by the condition 

Ep < �89 ~- 1.1 MeV. (9) 

In the centre of the NQFP,  i.e. at Ep = 0, the 3-momenta of all particles lie in the 
same plane and their energies and angles are given by the equations 

V p~ak E~,(E~, - A)(1 - cos 0r, ) + �89 2 
-"  m -- A + Er(1 - cos Or, ) 

EPeak  E~, - -  E p e a k  - -  A ,  
y' ~ - n  

(10) 

(11) 
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tan 0~ eak = - s i n  0; F, pe"k -~' (12) 
E~ -- cos 0~, _~,]~peak 

which coincide with the corresponding formulae for photon scattering by a free 
nucleon at rest in the limit of A = 0. The relations (9)-(12) determine the kinematic 
region of the reaction (1) which has to be covered by any experimental setup aiming 
at the investigation of vn scattering at the energy E~ and angle 0r, chosen. Loosely 
speaking, the neutron momentum p, should lie within the sphere of the radius 
[Ap, I -~ ~ = x/r~s --~ 45.7 MeV and centered at ,_,n peak with the appropriate energy 
(10) belonging to the region of the NQFP.  

In terms of the reaction amplitude Tfl, 

Sfi - i(2n)~6~4)(p,  + pa Pr" P,, Pp) /- 1 m 2 . . . .  X/ (13) 4E~E~, ~pe. 

with the states normalized as (p'jp) = (2n)36(3)(p ' - p) and e N = E N + m being the 
nucleon total energy, the laboratory (lab) differential cross section of the reaction 
(1) reads 

d3o " mlp.lE~, I Tj-i[ 2 
df~,, d a .  dE ,  - 4ErE~e) (2n) 5 '  (14) 

where E~e ~ = (pr, pp)/m is the energy of 7' in the proton rest frame. In Eq. (14) the 
usual sum and average over final and initial polarizations is implied. 

Another observable we shall consider can be measured if a linearly-polarized 
7-beam is available. This is the cross-section asymmetry for parallel and perpendicu- 
lar polarizations of initial photons with respect to a chosen azimuthal xz-plane, 
which can, e.g., be the azimuthal plane of the outgoing photon or neutron. The 
asymmetry is determined by the interference of amplitudes Tf~(2) with opposite 
helicities 2 of initial photons, 

Z - dai  - dalj - 2 Re[Tf~(2 = 1)Tp(2 = - 1 ) ]  (15) 
dai + dall I Tf/(2 = 1)[ 2 + = - 1 ) [  2 .  

Here the sum over polarizations of d, 7', n, and p is implied and the relative phase 
of the polarization vectors ez of 7 with helicities 2 = 1 and 2 = - 1 is fixed by 

I 
e z - , /~(2~ + iS'). (16) 

Since in the following numerical calculations we shall consider only on-plane 
kinematics, which covers the centre of the NQFP  and has coincident 77'- and 
yn-planes, we make no distinction between the corresponding Z~, and 2 ,  asym- 
metries and denote the asymmetry simply by Z. 

3 Pole Diagrams 

We use the diagrammatic approach to calculate the amplitude Tfi. According to this 
method, the amplitude of the process is approximated by a few dominating diagrams, 
which have singularities close to the physical region of kinematic variables, see, e.g., 
refs. [8, 9]. 
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j >  n p d - --- N-~ 

p -'- - ~' n a c ~  N2 
a b 71 

Fig. I. Pole diagrams for the reaction 7d ~ 7'np 

We begin with discussion of the pole diagrams. Since we aim to extract informa- 
tion on the ?n scattering amplitude, we should first take into account the contribu- 
tion of the diagram in Fig. 1 a and choose the kinematics in which this diagram 
dominates. Using Feynman rules for nuclear reactions I-8], we write down the 
corresponding amplitude as 

1 F ,(pp) = <yn I TI 7fi>~pa (p~), (17) Tf~ a = <YnlT l7h> Ea - Ep -- E, 

where Fpd,(pp) is the vertex of the d ~ pfi transition, 

1 
= e ,  - e , .  - (18) 

is the deuteron wave function, and (7'nl Tl?fi) is the half-off-shell ?n scattering 
amplitude. We imply but do not indicate explicitly here and below the summation 
over spin indices of intermediate particles. Since the nucleon propagator in Eq. (17) is 

1 1 m 
~_ (19) 

E d - -  Ep -- E~ 2Ep + A p2 ..1_ (Z2' 

the diagram in Fig. I a has a pole singularity in Ep located at the point Ep = - A/2 -~ 
- 1 . 1  MeV. When the proton-spectator momentum IPp[-' 0, we approach this 
singularity closely, and the contribution of Fig. I a is maximal. The region of IPpl <~ 
is just the region of the NQFP.  

Let us introduce the cross section of the ?~ - ,  ?'n process in the deuteron rest 
frame, in which the intermediate (almost on-shell) neutron ~ is moving: 

d t r (?h~7 'n )  m E 2, [(?'n[Tlvfi)l 2 (20) 
d~, = v~-~ EyE~", ) (4~) ~ 

Here E~,)= (pep , ) /m is the energy of ?' in the neutron n rest frame and v = 
1 - Pr,=/Pao is the relative velocity of initial photon and neutron ft. Then the differ- 
ential cross section of the reaction (1) with the amplitude (17) is recast into 

d%X" = vI~"(PP)I2 dtr(?fi ~ ?'n) (21) 
df2r, dapp (2re) 3 dO t, 

and has a simple interpretation: It is the differential cross section of the "'elementary" 
subprocess ?fi --, ?'n times the probability to find the spectator p with the momentum 
pp inside the deuteron times the flux factor v due to the movement of the neutron 
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~. Another form of expression (21) is given by 

d3a I~ l@ffn(pp)l 2 [p.] epE~", ) da(y~ -+ y'n) 
- v ( 2 2 )  dF2,, ds dE, (2re) 3 E~V, ) d ~ ,  

These formulae can be used to extract the 7n scattering cross section from measure- 
ments of dao/d~, df~. dE, provided the contributions from other diagrams and 
off-shell corrections are small or taken into account, or an extrapolation in Ep is 
made, see Sect. 6. 

Apart from the mechanism represented by Fig. 1 a, a similar process is possible 
with the photon scattered by the proton, see Fig. 1 b. The corresponding amplitude is 

1 
Tff = (~'ptTfyP> Ea - E, - E0 F~"(p") = <Y'Pl T[TP>0~,(P,); (23) 

it also has a pole singularity oc (2E, + A) -1. If we want the contribution from Fig. 
I b to be suppressed, we should choose the kinematics with E, >> A. According to 
Eq. (10), it takes place if the photon is scattered at not too small an angle. In the 
following we shall consider just such kinematics. Note that particularly the large- 
angle amplitude of 7~--* ~,'n is most sensitive to the difference ~, - /~,  of the neutron 
polarizabilities and to the sign of F~%~ [10]. 

Evaluation of the amplitudes (17) and (23) requires knowing the deuteron wave 
function Ova,, which is specified in the nextsection, and the half-off-shell nucleon 
Compton scattering amplitude <y'NI TlyN>. For a free nucleon, a realistic 7N 
scattering amplitude is provided by dispersion relations. It is not possible to use the 
same dispersion technique for a bound nucleon because of the lack of appropriate 
photoproduction input. On the other hand, simple diagrammatic models of 
Blomqvist-Laget type, which are very suitable for off-shell extrapolations and based 
on tree diagrams of yN-scattering plus the A-isobar contribution, are too rough for 
on-shell nucleons, see, e.g., the discussion in ref. [25]. So, we have preferred here to 
rely on the dispersion calculations of ref. [10], which are rather accurate for a free 
nucleon. Although, thereby, we essentially neglected the nucleon off-shell effects; 
note that the neutron ~ is off the energy shell only by < 2-4 MeVin the kinematic 
region of the NQFP. For Fig. I b, the off-shell shift of/~ is higher but the whole 
contribution of the amplitude (23) is very small, see Sect. 6. 

The on-shell Compton scattering amplitude is described by six complex func- 
tions Ri(W, 0") of the total centre-of-mass (c.m.)energy W and c.m. scattering angle 
0* [12]. It reads, in the c.m. frame, as 

().', +�89 i�89 = 47r w 1 + ).2'z 
m 2 [ - (R~ + L,t'R2) i (2R 3 + ).'R4) 

_+ (1 + 22'z)(2'R s + 2R6)], 

<,~', T�89 ___�89 = 4re W- sin 0"~ 1 -  + 22'Z(2R5 + 2'R6) m [_ 2 

l-T-2 ,_ ] 
+ ~ f - ( 2  t~ 3 + 2R~,) , (24) 

where z = cos 0", 2 and 4' are photon helicities, and _+ �89 indicates the nucleon spin 
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projections on the direction of y in the c.m. frame. We have used the same on-shell 
formulae as a substitute for the off-shell amplitude (7'NI TI V-N). More specifically, 
the Compton amplitudes in Eqs. (17) and (23) have been substituted by the right- 
hand sides of Eq. (24) found at the total energy W = x/(Pr + PN) i and the scattering 
angle 0* = 0~ in the c.m. frame of the y'N pair. 

It is easy to understand that in Eq. (24) the use of the same energy W as in the 
subprocess of Compton scattering off a virtual nucleon is essential to take properly 
into account the strong energy dependence of the Compton amplitude due to 
A-resonance excitation. The choice 0* = 0~ is not so crucial but it keeps in the same 
regime angular factors of most important diagrams of yN-scattering, i.e. A-excitation 
(both for p and n) and Thomson term (for p). By studying a simple diagrammatic 
model with spinless point-like deuteron and nucleons, we have observed that the 
prescription used to substitute W and 0* ensures a high accuracy of < 1% for the 
amplitude T~ in the NQFP region. 

The amplitudes Ri in Eq. (24) carry information on the nucleon polarizabilities 
used. In the limit of (0 -= ( W  2 - m2)/2m ~ O, all the Ri(W, 0") are equal to zero 
except 

e 2 1 + "/73 
R1 = 4~zm 2 + 0((0). (25) 

The electric and magnetic nucleon polarizabilities manifest themselves in the qua- 
dratic low-energy corrections to the amplitudes R 1 and Rz: 

RI~ ~ = (025 N + O( (03 ) ,  R p~ = (.02fiN "at- 0 ( ( 0 3 ) .  (26) 

The amplitudes R s and R 6 incorporate the n~ contribution, 

m3(03 g~sNF~~ t = (py, - -  py)2 (27) 
R ~ ~ 1 7 6  4 t - m 2 o  

which depend on the magnitudes and relative sign of the 7zNN and 7r~ couplings. 
Numerical values of the amplitudes Ri are borrowed from the dispersion calcula- 
tions of ref. [10]. 

Since the polarizability of the neutron appears in the total Compton scattering 
amplitude together with other contributions, which are typically greater than those 
of Eq. (26), the important question arises whether it is possible to determine 5, 
accurately on the background of those contributions estimated theoretically. In part, 
this question was already analyzed in ref. [10] and now we update these previous 
findings. In the region of low energies, Er --, 100 MeV, the most important uncer- 
tainty in the ~n scattering amplitude turns out to be related with the coupling 
constants g~NN and F,~ of the t-channel rc~ There is some controversy 
about both of them, see, e.g., refs. [35-37], and the product g~NNF,~:, is presently 
known to within -I- 5%. Together with uncertainties in the A-resonance tail, etc. this 
leads to 1-2% variations in theoretical cross sections (depending on energies and 
angles) and prevents to determine 5, better than -,~ + 2, provided 5, is close to the 
value of 12 as given by the nA experiment [19]. 

At higher energies, E~ ~ 250 MeV, the uncertainties in the theoretical 7n scatter- 
ing amplitude are mostly stemming from the absolute normalization of the A- 
excitation amplitude. At the moment, the total theoretical uncertainties in the 
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predicted 7n scattering cross section are estimated to be ~ 10~, as seen from the 
variances between different partial-wave analyses of single-pion photoproduction 
off neutron in the A-resonance region used as input for the dispersion calculations 
[38-41]. In principle, the correct normalization of the A-excitation can be estab- 
lished by measuring the same 7n scattering (through the reaction 7d .-r 7'np) very 
near the A-peak, and the remaining uncertainty in the cross section is ~ 59/0 . So, with 
the normalization uncertainty fixed, the uncertainty in the extracted value of ~ from 
data at E~ ,,- 250 MeV related with the dispersion model of Compton scattering can 
be reduced to -~ +_ 2. 

Eqs. (17) and (23) are written down in the deuteron rest frame and hence contain 
the amplitudes (7'N[ TIT/V) in that frame, whereas the formulae (24) are valid with 
the nucleon spin projections taken in the c.m. frame of the 7'N-pair. Therefore, it 
would be more appropriate to combine the expressions (24) with relativistic rota- 
tions of nucleon spins [46] (note that the photon helicities are Lorentz invariant) 
to take into account the difference between the lab and 7'N frames. We have 
neglected such rotations on the basis of the following arguments. The effect of the 
spin rotations vanishes in the dominating contribution (22) to the cross section, as 
well as in the much smaller contribution of Fig. 1 b, because there the quantity 
1<7'N[ TIvN> 12 is Lorentz invariant and can be evaluated in any frame. The contri- 
butions due to interference of Figs. 1 a and 1 b and np rescattering do depend on 
the spin rotations but they are too small in total to make the relativistic effects of 
the order of ((n/m) 2 noticeable in the cross section. In whole, the semi-relativistic 
procedure used to evaluate the pole diagrams in the NQFP  region has the merit of 
being exact at high energies when the contribution (21) survives alone. 

Another type of pole diagrams is shown in Fig. 1 c. It is easy to establish that 
the corresponding amplitude is suppressed, as compared to the one of the diagram 
in Fig. 1 a, at least by the factor of A/E~, which is < 0.02 in the kinematics considered. 
Only at energies below ,-~ 50 MeV the contribution of Fig. 1 c becomes noticeable. 
We neglect it in the present paper. 

4 One-Loop Diagrams with np Rescattering 

Within the diagrammatic approach studies of various processes with deuteron 
break-up, such as ~d ~ np, ed ~ enp, 7d --," rcNN [9, 33, 34], show that diagrams with 
the nucleon rescattering noticeably contribute to the reaction amplitude. In the case 
of the two-photon reaction (1), the rescattering can take place both in the final and 
intermediate state, see the diagrams in Fig. 2, which exhaust the rescattering correc- 
tions in the one-loop approximation. 

Let us discuss first the diagram in Fig. 2 a with photon scattering by a proton 
or neutron. In the processes of 2 ~ 3 type, including the reaction ~d ~ ~'np, the 
relative scale of the contributions to Ty i from the triangle and pole diagrams is very 
different, depending on energies and angles [8]. The location of the triangle singu- 
larity t, of Fig. 2 a in the variable t = (p~, - pr)g depends on the energy E,p of relative 
motion of the nucleons n and p. The value of  t s is 4c~ 2 if E,, v = 0 and thus it is very 
close to the physical region. Therefore, for small-angle photon scattering and small 
E,p, Fig. 2 a is very important. Even with increasing photon scattering angle, the 
contribution Ty 2a remains noticeable, especially at low photon energies < 100 MeV, 
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d 
~ - -  - . > N 2 + c r o s s  

C 

Fig. 2. One-loop diagrams with np rescattering in the final (a, b) and intermediate (e) state 

because then the energy E,p is also not high, being, e.g., ,,~ 7 MeV at Er = 100 MeV 
and 0~, = 135 ~ in the N Q F P  region, and the S-wave np scattering is rather strong. 

On the contrary, the contribution Ty 2b of Fig. 2 b is less essential. Since again the 
S-wave plays the leading role in the np rescattering, essentially magnetic-type 
couplings in the ~,NN vertex contribute to the amplitude Ty 2u. As a result, Ty 2b proves 
to be suppressed by the factor of EJm as compared with the amplitude Ty 2a of 7p 
scattering and it is o f  the same order as the contribution of Fig. 1 c. Numerically, 
Fig. 2 a contributes ~ - 30% at E~ = 100 MeV and , ~ -  7% at E~ = 400 MeV to the 
cross section in the N Q F P  region, so the contribution Ty 2b can be safely neglected. 

One can see in a similar way that the contribution Ty~ c of Fig. 2 c with rescattering 
in the intermediate state is suppressed like Er/m in comparison with Ty~ a and hence 
it is not important. The smallness of the contribution like Ty 2c with respect to Ty~ a 
has been emphasized also by Weyrauch [47] in his studies of elastic 7d scattering; 
in the elastic case, however, there are no pole diagrams (Figs. 1 a-1 b) and the 
rescattering in the intermediate state is more essential in total: It is at the level of 
10% at Er ~ 50-100 MeV in the forward-angle cross section, and <~3% when 
0~, >/90 ~ [47]. 

Thus, we keep only the diagram in Fig. 2 a for numerical calculations. The 
corresponding contribution reads 

f dapNs (nPl ~' T(E,p)IN Ns) (7'57'f T{7.~I) d 
T/~" = m (2rc)3 q2 _ ~12 4- iO O~Ns(PNs), (28) 

where ~1 = PNs -- �89 -- PC) and q = �89 -- p.) are relative c.m. momenta of the np 
pair before and after the rescattering, respectively, and (npl T(E,p)i57'Ns) is the 
half-off-shell np scattering amplitude at the energy E,p = q2/m # ~t2/m. The sum over 
57 = p, n is implied in Eq. (28). 

The energy W at which the amplitude (7'57'1TIy57) has to be used in the 
integrand of Eq. (28) should be specified too. Considering, in accordance with ref. 



Photon Scattering on Quasi-Free Neutrons 111 

[9], Fig. 2 a in the Feynman formalism with 4-momenta conservation and additional 
loop integration over the energy, we neglect singularities at energies -~ 2m and close 
the integration contour around the nearest pole of the propagator of the nucleon- 
spectator Ns. Then we arrive just at the formula (28) with the nucleon Nsbeing on 
mass-shell. Accordingly, we calculate the energy W in the vertex (?'N'] T[~N) 
by using the nucleon _N energy P~o -- 2m - A - x/p2s + m ~ and momentum - PNs" 

The integral in Eq. (28) receives contributions mainly at low momenta IPN~I ~ 
when the deuteron wave function is not too small. For this reason the nucleon .~ is 
effectively off the energy shell by only a few binding energies A. Moreover, just in 
the kinematics of quasi-free Compton scattering, the intermediate recoil nucleon N' 
will also be near the energy shell whenever the initial nucleon N is almost at rest 
and on shell. So, both Compton scattering and rescattering blocks appear in Eq. 
(28) effectively in a near-on-shell regime and off-shell corrections are expected to be 
small. 

For getting a more quantitative estimate of the importance of higher momenta 
P~s, we introduced into Eq. (28) the form factor AZ/(A 2 + pZs) with A = 200 MeV 
and we observed that in three typical quasi-free kinematics, namely at Ee = 100, 
250, and 400 MeV with 0 r, -- 135 ~ the change in the resulting cross section (14) was 
+ 4700, - 2.57o and - 1.5%, respectively. 

Since the nucleon/V' is effectively near the energy shell, various N N  potentials 
are expected to give very similar half-off-shell scattering amplitudes. Such a feature 
was explicitly demonstrated for the Paris and Reid soft-core potentials in ref. [42] 
and a similar comparison for the Paris and three versions of the Bonn potential was 
done in ref. [43]. In the following, for getting the deuteron wave function and the 
np rescattering amplitude we shall use the Paris potential [30] in the separable 
approximation of ref. [31], which is convenient for us because it directly provides 
these quantities in the momentum space. 

The deuteron wave function is 
md 

~pa(q) = ~a(q) _= ~pm.(q) 

- Ccm)m,(m)mC2ma,,, ~ Y2mL(q)w(q), (29) C(1/~)..(1/2)mnl, l(q ) - -  1mS lm a 

where r%, m,, rod, m s = m p  + m, and m L -- m d -  ms denote z-projections of the spins 
of the particles, of the total spin and orbital angular momentum; YLmL(r are spherical 
harmonics. It is normalized as 

f daq d 2 1 (~)31~tpn(q) I ~ ~,npm~m d,f daq ma 2 
= q2 dq r.IA2,  , 

= 1. (30) 

The functions u(q) and w(q) are expressed in terms of (non-normalized) partial 
vertices [31] 

4 C.[LSqL+2(.-I) 
9fLS(q) = (JLSql  VNulEJ(L)S)  ~- ~ SLS 2 L-tZ/21+." (31) 

n=l [q2 + ( f l i n )  ] 

Here [JLSq) means the partial wave of the free particles at the relative momentum 
q, and [Efl(L)S) is the eigenstate of the Paris potential VNN in the np channel with 
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the energy E~ and quantum numbers J(L)S, where we use the generic symbol (L) to 
specify both uncoupled partial waves and those with mixed orbital momenta L = 
J +__ 1. These eigenstates compose the truncated basis of the separable expansion. 
The sum in Eq. (31) is a compact analytical representation of the functions gfLS(q). 
It is given in terms of the parameters ~,~JLS and e~,RJLS listed in ref. [311. Since the 
deuteron is among the states ]E~J(L)S> (that is the state i = 1 of the channel 3S~-3D~ 
in the notations of ref. [311), one can use Eq. (18) and write down 

m JLS JLS 
~ - ~ f f ~ = l  (q)lJ=LL =2,s =1 �9 u(q) = -- N 2 ~2 ffi=l (q)lJ=l,L=o,s=l, w(q) = - N m q + + 

(32) 

Here the factor N provides the appropriate normalization (30) of the deuteron wave 
function; N = 348.0 MeV 3/2 for the PEST4 potential in ref. [31]. 

The off-shell amplitude of np scattering is also determined by the vertices g~LS, 

<np[ T(E) l@> = ~ rsm~ rsm~ c, Jm~ r J ~  
i J (  1/2)rap( 1/2)m n ~( 1/2)~p( 1/2)r~ n ~LmLSras ~'~L~LSfflS 

JSLLrajmzfaLms~s 

x (2~)aiL-LYLm~(~)(YEm~(~))*<JLSql T(E)IJLs~>, (33) 

where the partial np scattering amplitudes have the separable form 

~J(L)S 

"JLS(q)zI(L)S(E)gS~'S(~I), L, ~L ~ (L). (34) <JLSqlT(E)IJ~LSgI> = ~, ~i ij j 
i,j=l 

Here R J(L~s is the number of eigenstates with different energies E~ included into the 
basis of the separable potential for the channel J(L)S. This is the rank of the 
separable potential. The matrix z6~L)S(E) is determined, through its inverse, in terms 
of the matrix elements of the np potential, 

<EiJ(L)SI VNN IEj (L)S> - -  [)LJ~L~SI~I (35) 

(the matrixes ,~J~L~S -ij are also listed in ref. [31]), and the vertices 9szs: 

I ~  JLS JLS 2 
JtL)S -1 F,~J(L)Sl-1 gi (q)gi (q)q dq ['c (E)]ij = L-- J i ~ -  ~ q2 (36) 

L$(L) E -- - -  + iO 
m 

The related amplitude <np[ T(E)IP~), which is needed to find the contribution to 
T/]a of both proton and neutron Compton scattering, has the same form as expres- 
sion (33) only with the replacement tl ~ - q  or, in other words, with the additional 
factor of ( -  1) L inside the sum in Eq. (33). 

In our calculations of the amplitude 2a T/~ we take into account all partial waves 
considered in ref. [311, i.e. those with (L) = (0), (1), (2); they include waves with L = 3, 
4 coupled to the S-, P-, D-waves by tensor forces. The summation over polarizations 
in Eqs. (28) and (33) and the three-dimensional integration in Eq. (28) have been 
performed numerically. 

Detailed discussion of calculations of the FSI correction with other potentials 
would bring us too far beyond the scope of the present paper. Here we give only a 
brief summary. Calculating the half-off-shell np rescattering T-matrix for the config- 
uration space Bonn OBEPR (ref. [441, Table 14) and OBEP-A and OBEP-B 
potentials (ref. 1-45], Table A.3) we found that all versions of the Bonn potential 
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result in the same cross section (14) to within 1% (OBEP-A and OBEP-B giving the 
highest and lowest cross sections, respectively) in the above three typical kinematics 
of quasi-free scattering at 100, 250 and 400 MeV [43]. The Paris (PEST) potential 
gives systematically lower cross sections (by 3%, 1.4%, 1.8% at 100, 250, and 400 
MeV, respectively). One may conclude that the uncertainties related with different 
forms of the NN potential are not large; however, they become more important in 
the case of low energies when the FSI correction is ~ - 3 0 % .  

5 One-Loop  D i a g r a m s  with M E C  and IC 

The important role of subprocesses in which a meson is created at one nucleon and 
absorbed at another one is well known from many studies of form factors and 
photo- and electro-disintegration of few-nucleon systems. Owing to the small pion 
mass and the related large range, the one-pion component of the meson exchanges 
dominates at low momentum transfer, which is also the case for the reaction (1) in 
the NQFP region. In this section we calculate the pion-exchange contribution in 
one-loop approximation, see Fig. 3, which is justified provided E,p >> A; from studies 
of the reaction ~d -~ pn it is also known that corrections to the MEC + IC contribu- 
tion due to np rescattering are typically small [34]. 

The amplitudes for Figs. 3 a and 3 b read 

f d3Pr, , 
T f  3a -~- (~z)3[(TPiTlrc~176 (YnlTIrc-P>(rc-plTIT~)] 

x q2 2 + ~ fi (37) 
-- m~ + i0 n ~ n + 

3b e2g2NN(ee'*) f d3p~ /pt(eq2)lfi)(nl(eq,)[P) ,a( , 
and 

(38) 

Here (toNI T I~.~) and (r T InN) are the amplitudes of the pion photoproduction 
and the reverse reaction, respectively, and the nucleon brackets in Eq. (38) denote 
the corresponding nucleon spinors; e and e' are the photon polarization vectors; q, 
ql and q2 are the pion 4-momenta, see Fig. 3; g2~N/4rc = 14.5. 

Again the energies of the intermediate nucleons N and .~' and pions have to be 
specified in Eqs. (37) and (38). Considering Fig. 3 a in the non-covariant perturbation 

" n or p 
d 

N ' ' ~ p  or n 

a ' -7 '  

,Tr(q,) p 

P' % ~ n 

Fig. 3. One-loop diagrams with 
MEC and IC 
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theory, we would have two different sub-diagrams with opposite time-orderings of 
emitting and absorbing the pion. As was explained before, in each of these two 
sub-diagrams the energies in the corresponding y~tNN vertices must be calculated 
as if the second nucleon was on the mass shell. The most essential energy factor 
appears in the sub-diagrams due to the non-covariant propagators which are, e.g., 

1 1 1 1 
+ 

Er + e d -  ~ ,  - G -  Sn - E y  + en - eFe-- G a - -  b -  G a + b + G 

2(s,~ + b) 
(e, + b) 2 - a 2 (39) 

in the case of Fig. 3 a with yn~n vertex. Here the symbol e denotes the total on-shell 
energies and 

a = E~ - Sn + �89 d + e k -  s~,) = E ~ -  E n -  �89 

2b = ek, + e~ - Sd = - -  + A. (40) 
m 

It is reasonable to neglect the value of b in comparison with e~ because b is effectively 
small in Fig. 3 a owing to the rapid vanishing of the deuteron wave function with 
increasing b. Then Eq. (39) becomes the relativistic pion propagator, 

1 1 
2 ~22 ~-  2 q2 a 2 ,  (41) s~ -- m~ + -- 

up to the factor 2 G that we shall include into the pion vertices. 
Thus, the quantity a in Eq. (41), which is independent on the loop momentum 

~, takes the role of the pion energy q0 and is calculated as if the nucleons N and/V' 
carried equal parts of the deuteron energy e a = 2m - A. This rule of the equal 
off-shell shift of the nucleons will be used in evaluations of Eqs. (37) and (38). 

The pion photoproduction amplitude ( z r N [ T [ T N )  in Eq. (37) has the form 

QrN'I TlyN> 

= i e g , m ~ x / ~ I _ ( N  , (N'[g(q - p~)]N) ] 2  a 2 - i0 ~ ] (oe) [N)  + 2(eq)(q _ p~)2 + m~ - 

,G1Gs ~ r (N'l~(eq) +~i*(e x_~tN> 
- ~  ~ u m-s --~A + �89 a , (42) 

where q is the pion 3-momentum, e,~ is the pion electric charge, 2 is the photon 
helicity, and other parameters are specified below. The formula for the amplitude 
(y'N'[ T[rcN) is obtained from Eq. (42) by Hermitean conjugation of all factors 
except i0 and iFa. 

The first two terms in the right-hand side of Eq. (42) correspond to the diagrams 
a and b in Fig. 4. Together with TI 3b, they describe, after insertion into Eq. (37), the 
contribution of MEC to the amplitude T~i. The last term in Eq. (42) is related to 
A-isobar excitation (Fig. 4 c) and determines the IC contribution to Ty v The value 
C~ in this term is equal to -T -~  for ~r----meson and x//~ for n~ The yNA and 
nNA couplings, G1 and G3, and the mass and width of the delta isobar are borrowed 
from the Blomqvist-Laget model [32], 
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9, rr 9' rr 7 7r 

/ /  I 
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9" 71" 

N N' 

o b 

Fig. 4. Diagrammatic representation of the yN ~ nN amplitude used 

C 

M a + m 2.18 
G1 = 0.282e~+ , G3 = - - ,  Ma = 1225 MeV, 

m mn 

fq(Q)'~a M a 1 + R2q2A 
FA(Q) = 110 MeV • I ! \--~-a / Q 1 + R2qE(Q) ' (43) 

where Q and q(Q) are the total pion-nucleon energy and the corresponding pion 
momentum in their c.m. frame, qa = q(M,s) ~- 220 MeV and R = 0.007 MeV -1. 

Besides, the monopole form factor 

2 
F~(q2) A 2 - m,~ (44) 

= A 2 _ q2 

has been inserted into all pion-baryon vertices. The parameter A s = 1250 MeV has 
been chosen consistently with the Paris potential [48]. However, we have observed 
that the variation of A,~ within 50~ did not produce any essential changes in the 
resulting cross sections, mainly because the contribution of MEC and IC is not very 
high itself. 

Both the summation over polarizations of internal particles and the three- 
dimensional integrations in Eqs. (37)-(38) have been performed numerically. 

In principle, the pion photoproduction amplitude (42) should include also the 
nucleon pole term. However, being kept in Eq. (37), the nucleon pole term produces 
some diagrams that are already included due to the use of initial and final eigenstates 
of the N N  Hamiltonian incorporating one-pion exchange and hence they must be 
subtracted. Since, in the N Q F P  region, the contribution of MEC + IC turns out to 
be relatively small, the contribution of the nucleon pole term being even smaller, we 
preferred to simplify the consideration and omitted the nucleon pole term from the 
very beginning. 

Of course, the nucleon pole term, being proportional to the nucleon 4-velocity, 
p~e~/rn, is small only in the transverse gauge 

~o = ~k = O. (45) 

Though we have no manifestly gauge-invariant amplitude for MEC, by adhering to 
the approximation of no nucleon pole, which is justified in the specific gauge (45), 
we fix the gauge ambiguity. 

The diagrammatic approach for calculations of MEC and IC used here has been 
thoroughly tested in refs. [33, 34] in applications to the reaction yd ~ np for which 
many experimental data exist. It provides a very satisfactory description of the data 
up to ,-~ 300 MeV. 
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6 Results and Discussions 

Based on the described formalism, we have calculated the differential cross section 
(14) and the asymmetry (15) in the on-plane kinematics (q~, = ~b, = 0) at a few photon 
energies between 100 to 400 MeV and for large angles 0r,, which have been chosen 
in accordance with the kinematic region of enhanced sensitivity of vn-scattering to 
the difference of neutron polarizabilities ~. - ft. and sign of the n~ constant, 
see ref. [-10]. The corresponding neutron angle has been taken close to the NQFP 
value (12). 

The relative significance of Figs. 1 a, 1 b, 2 a, and 3 a -b  for the differential cross 
section of the reaction (1) is illustrated in Fig. 5 where the cross sections are shown 
corresponding to quasi-free 7n scattering (QF-n, Fig. 1 a), plane-wave impulse 
approximation (PWlA, Figs. 1 a-b), distorted-wave impulse approximation (DWlA, 
Figs. 1 a, 1 b, 2 a) and total contribution (DWlA + MEC + IC, Figs. 1 a, 1 b, 2 a, 
3 a, 3 b). The neutron polarizabilities are chosen to be ~, = 10 and ft, = 6, which are 
close to the experimental result (5) and the dispersion predictions (3) and (6). The 
contribution of Fig. 1 b with photon scattering by the proton is completely negligible 
in the NQFP region. Nevertheless, yp scattering does essentially contribute through 
Fig. 2 a, which reduces the original QF-n cross section by -~ 27% at E~ = 100 MeV 
and 0 r, = 135 ~ The higher the energy E~, the smaller is the role of np rescattering, 
and Fig. 2 a reduces the QF-n contribution by only ~-7% at Er = 400 MeV. The 
correction due to MEC and IC is ~ -  5% in the kinematics shown in Fig. 5 a and 
it typically becomes smaller at higher energies. Beyond the NQFP region all these 
corrections are more important. In particular, Fig. 1 b produces the proton quasi- 
free peak (PQFP) at very !ow energies of the neutron, E, < 1 MeV, which thus 
becomes a spectator. At small relative velocities of the np pair, which is achieved at 
E, -~ 4 MeV in the kinematics of Fig. 5 a, a strong peak appears due to the final-state 
interaction (Fig. 2 a). The differential cross section (14), being integrated over the 
PQFP, is almost five times greater than the corresponding integral over the NQFP, 
just in accordance with the ratio of 7p to 7n scattering cross sections at this energy. 
The visible smallness of the PQFP in Fig. 5 a is related with its large angular 

- - - - n  ~'~ A o N Q F P  ' ~  extension, Af) pQFp - -  4 n ,  whereas the angular size of the NQFP is only ___. - 
1 0  -1"  

In the case of the polarization observable, i.e. the asymmetry Z, both corrections 
due to np rescattering and MEC + IC are very important in the NQFP region at 
the relatively low energies of Er ~- 100 MeV. With increasing Er their significance 
diminishes (see Fig. 6). 

Figs. 7 and 8 illustrate the sensitivity of the total results (Figs. 1 a, 1 b, 2 a, 3 a, 
3 b) for the differential cross section and asymmetry with respect to the neutron 
electric polarizability. The predictions are given for ~, = 0, 10, and 20 while ~, + ft, 
is fixed according to Eq. (6). Also, the theoretical variant with ct, = 10 and the 
"wrong" sign of the n~ constant, gF =- g,~uNF,,orv > 0, is shown. Evidently, the 
data on the differential cross section taken at various energies would enable one to 
determine unambiguously both the value of ~, and the sign of gF. Measurements 
of E also provide such a possibility, although the interpretation of the asymmetry 
in terms of the neutron polarizabilities is less reliable because of stronger dependence 
on rescattering and MEC + IC corrections. 
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Fig. 5. The effect of different diagrams 
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If the bremsstrahlung photon beam is used for measurements and the final 
photon energy is not carefully measured, the visible quasi-free peak is smeared but 
does still survive [-7]. The differential cross section with just the bremsstrahlung 
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photons in the N Q F P  region has been measured in ref. [1]. The results found there 
agree with the present theoretical calculations and the neutron polarizabilities (3) 
and (5). For  example, the cross section at 135 ~ integrated over energy and angular 
ranges of the registered particles ~' and n is [1] 
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~11.3 nb/sr 2, theory with . .  = 10 and 9F < 0, d3d AE', = +2 9 2 
\ ~ /  -d~-,, dE,, /12.1_2 3 nb/sr , experiment. 

(46) 

The data obtained and compared with the theory enabled the G6ttingen-Mainz 
group to establish the value (2) for the neutron polarizability and to support the 
commonly used sign of #F < 0. 

It is interesting to discuss the possibility to determine the ~n scattering cross 
section in a model-free way by using the standard Chew-Low extrapolation proce- 
dure. Its idea consists in the extrapolation of the measured cross section to the 
kinematic point Ep = - � 8 9  in vicinity of which the neutron pole diagram of Fig, 
I a dominates, see Eqs. (21) and (18), (19). Accordingly, we show in Fig. 9 the value 

p(Ep)=[l~O~n(pfll2mE~",_~)] -1 d% (47) 
(2re) 3 gpE~ d df~*, dapp 
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Fig. 10. The effect of different diagrams 
in the region of the PQFP. Dashed 
lines: the contribution of the proton 
pole, Fig. 1 b. Dashed-dotted and solid 
lines correspond to DWIA (Figs. 1 a, 
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(Figs. 1 a, 1 b, 2 a, 3 a, 3 b) contribution, 
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for fixed parameters of the subprocess of 7n scattering, W 2= m2+ 2mE~ ) and 
0* = 0r, and fixed relative energy E.p = --.pEPeak _"~ ! ~'peak2 ~,  , which drives the rescatter- 
ing magnitude. At the pole, the value of P becomes the differential c.m. cross section 
of 7n sc~tering: 

P ( - � 8 9  - d ~  (48) 

Since the variables W, 0", E,p and Ep do not determine unambiguously the kinemat- 
ics of the reaction (1), we have the whole cone of possible directions (0,, ~bp); P is 
shown in Fig. 9 for one of two corresponding angles 0~, of in-plane events, the second 
branch having very similar features. 

The theoretically expected dependence of P on Ep is non-linear, see Fig. 9, so at 
least an extrapolation quadratic in Ep should be used. Such an extrapolation from 
the region Ep ~< 1 to 2 MeV covering most of the N Q F P  yields rather accurate 
results, within - 6% in the kinematics of Fig. 9 a and better than 1% in that of Fig. 
9 b. Therefore, the extrapolation at fixed E,p indeed provides a model-independent 
way to find the 7n scattering cross section. Note, however, that original statistical 
errors in the measured cross sections transform into the uncertainty in the extrapo- 
lated value of P increased by the factor of K ~ 5 to 10; for example, the parabola 
P(Ep), which goes through the 3 points Px = P(Ep = 0.2 MeV), P2 = P(Ep = 0.8 
MeV) and/>3 = P(Ep = 1.5 MeV) belonging to the NQFP  region, gives P(Ep = - 1.1 
MeV) = clP1 + c2P2 + c3P3 with cl -~ 6.4, c 2 _~ -8 .1  and ca -~ 2.8, so that K = 
x/c~ + c 2 + c3 z -~ 10.7 in this case. Moreover, the extrapolation in Ep at fixed E, ,  
uses only a few percent slice of all events in the N Q F P  region, which have almost 
zero projection of the proton momentum pp on the direction of p,. All this imposes 
severe requirements to the precision of the measurements and hence to the total 
statistics. Since the integral of the cross secton (14) over the NQFP  region of the 
neutron momentum is very small and typically ~ 1 nb/sr at Ey ~ 100 MeV, the 
extrapolation method is impractical, at least at low energies, and one should 
explicitly consider the corrections to the neutron pole contribution as discussed in 
this paper. 

There is an evident way to test experimentally the calculations presented for the 
FSI + MEC + IC effects by studying quasi-free photon scattering on protons. Since 
the proton polarizability and, more generally, the ?p scattering amplitudes and cross 
sections are known better than those in the case of the neutron, the absolute 
predictions for the cross section daa/d~, df~p dEp can be made and compared to 
the contribution of Compton scattering on the free proton at the same W and 0", 
see Eq. (22) and the dashed curves in Fig. 10, which are calculated with ap = 11; at 
other ap, the dependence of the triple differential cross section on ~z, essentially 
repeats the a~,-dependence of d%p/d~, [10]. The decrease of the cross section found 
through the proton pole diagram by 24~, 6%, and 7% due to FSI + MEC + IC 
contributions is expected in the kinematics shown in Fig. 10. 

7 Conclusion 

The results of the presented calculations demonstrate that the differential cross 
section of 7n scattering, the neutron polarizabilities, and the sign of gF can be 
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determined from the differential cross section of the reaction (1) in the N Q F P  region. 
The main correction to the dominating quasi-free neutron contribution (Fig. 1 a) is 
due to np rescattering in the final state and is calculated rather reliably, whereas 
more delicate corrections due to M E C  and IC are small. After the pioneering 
measurement  [1], further experiments of this type are worth being done both  at low 
( ~  100 MeV) and higher ( ~ 2 0 0 - 2 5 0  MeV) energies to determine the neutron 
polarizabilities more accurately. Apparently, the accuracy of < 5 ~  in measuring the 
differential cross section of the reaction (1) should be achieved to tes t  and improve 
the result (5) of the measurement  of c~ n via nA scattering. Measurements  at the photon  
energy Er ~ 200-250 MeV are useful because the corresponding cross section is 
sensitive to lower values of ~n. At energies below the pion photoproduct ion  thresh- 
old, experiments are feasible with bremsstrahlung pho ton  beams and incomplete 
knowledge of the kinematics, i.e. only with the upper limitation of the final photon  
energy. 

The asymmetry E is also sensitive to the values of neutron polarizabilities. Since 
the contributions to E from np rescattering and M E C  and IC are not so small, 
measurements of E could be used as a test for theoretical treating of M E C  and IC 
in two-current  processes like the reaction (1). 
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