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Low-energy Compton scattering of polarized photons on polarized nucleons
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The general structure of the cross section ofgN scattering with polarized photon and/or nucleon in initial
and/or final state is systematically described and exposed through invariant amplitudes. A low-energy expan-
sion of the cross section up to and including the orderO(v4) is given that involves ten structure parameters of
the nucleon~dipole, quadrupole, dispersion, and spin polarizabilities!. Their physical meaning is discussed in
detail. Using fixed-t dispersion relations, predictions for these parameters are obtained and compared with
results of chiral perturbation theory. It is emphasized that Compton scattering experiments at large angles can
fix the most uncertain of these structure parameters. Predictions for the cross section and double-polarization
asymmetries are given and the convergence of the expansion is investigated. The feasibility of the experimental
determination of some of the structure parameters is discussed.@S0556-2813~98!02407-8#

PACS number~s!: 25.20.Dc, 13.60.Fz, 11.80.Cr, 13.88.1e
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I. INTRODUCTION

Compton scattering on the proton at low and intermed
energies has thus far been studied mainly with unpolari
photons. Many recent data are available on the unpolar
differential cross section both in the region below pi
threshold@1–3# and in the delta region@4–8#. They have led
to a determination of the dipole electric and magnetic po
izabilities of the proton, have given useful constraints
pion photoproduction amplitudes near the delta peak,
have provided sensitive tests for different models of Com
ton scattering, such as those based on resonance satu
@9–12#, chiral perturbation theory@13,14#, and dispersion re-
lations @15–19#.

With the advent of new experimental tools such as hig
polarized photon beams, polarized targets, and recoil po
imetry @20#, it becomes possible to study the very rich sp
structure of Compton scattering. In particular, many ad
tional structure parameters of the nucleon, such as the
@21–24# and quadrupole@25# polarizabilities, could be mea
sured in such new-generation experiments and used for
ing hadron models at low energies. The first attempt to
termine the ‘‘backward’’ spin polarizability from
unpolarized experiments has recently been reported@26#.
Therefore, it is timely to give a detailed description of t
appropriate polarization observables and their relationshi
the low-energy parameters that might be measured in s
experiments. That is the main purpose of the present rep

This paper is organized as follows. In Sec. II, we intr
duce the invariant Compton scattering amplitudes. In Sec
we develop a general structure for thegN scattering cross
section with polarized photons and/or polarized nucleons
the initial and/or final state. In Sec. IV we do a low-ener
expansion of the invariant amplitudes and develop formu
for the low-energy expansion of the cross section and s
observables. In the process, we introduce and discuss
physical meaning of the parameters~polarizabilities! which
are required to describe the cross section up to and inclu
the orderO(v4). In Sec. V we give theoretical prediction
PRC 580556-2813/98/58~2!/1013~29!/$15.00
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for all these polarizabilities by using fixed-t dispersion rela-
tions and compare them with available predictions of ch
perturbation theory. We then investigate the range of valid
of our low-energy expansion and show that it is genera
valid below the pion threshold. Finally, we investigate qua
titatively the dependence of different observables on the
larizabilities and recommend particularly sensitive expe
ments to perform. Some of the details related to
definitions and physical meaning of the polarizabilities a
contained in the appendixes.

II. INVARIANT AMPLITUDES

The amplitudeTf i for Compton scattering on the nucleo

g~k!N~p!→g8~k8!N8~p8!, ~2.1!

is defined by

^ f uS21u i &5 i ~2p!4d4~k1p2k82p8!Tf i . ~2.2!

Constrained byP and T invariance, it can be expressed
terms of six invariant amplitudesTi as @27,28,15,17,18#

Tf i5ū8~p8!e8* mH 2
Pm8 Pn8

P82
~T11g•KT2!

2
NmNn

N2
~T31g•KT4!1 i

Pm8 Nn2Pn8Nm

P82K2
g5T5

1 i
Pm8 Nn1Pn8Nm

P82K2
g5g•KT6J enu~p!, ~2.3!

wheree ande8 are the photon polarization vectors,u andu8

are the bi-spinors of the nucleons (ūu52m, m is the nucleon
mass!, andg55(1

0
0
1). The orthogonal four-vectorsP8, K, N,

andQ are defined as
1013 © 1998 The American Physical Society
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Pm8 5Pm2Km

P•K

K2
, P5

1

2
~p1p8!, K5

1

2
~k81k!,

Nm5emabgP8aQbKg, Q5
1

2
~p2p8!5

1

2
~k82k!,

~2.4!

where the antisymmetric tensoremabg is fixed by the condi-
tion e012351.

Unfortunately, there is no accepted standard for the d
nitions of the invariant amplitudes in nucleon Compton sc
tering. The definitions we use here may differ from tho
used in other works. We follow the conventions of Re
@17–19#, which are related to the so-called Hearn-Lead
amplitudesAi

HL used in Refs.@15,28# by

T15A1
HL , T35A2

HL , T552A3
HL ,

T252A4
HL , T452A5

HL , T652A6
HL . ~2.5!

The amplitudesTi are functions of the two variable
n5(s2u)/4m and t, where

s5~k1p!2, u5~k2p8!2, t5~k2k8!2 ~2.6!

are the usual Mandelstam variables ands1u1t52m2.
These functions have no kinematical singularities but th
are subject to kinematical constraints arising from the v
ishing of the denominators in the decomposition~2.3! in
cases of forward or backward scattering. Therefore, it is u
ful to define the following linear combinations@18,19,29#:

A15
1

t
@T11T31n~T21T4!#, A25

1

t
@2T51n~T21T4!#,
fi-
t-
e
.
r

y
-

e-

A35
1

hFT12T32
t

4n
~T22T4!G ,

A45
1

hF2mT62
t

4n
~T22T4!G , ~2.7!

A55
1

4n
~T21T4!, A65

1

4n
~T22T4!,

with

h5
1

m2
~m42su!54n21t2

t2

4m2
. ~2.8!

The amplitudesAi(n,t) are even functions ofn, they have no
kinematical singularities or constraints, and they have
mensionm23.

In the lab system~the nucleonN at rest! the kinematic
invariantsn, t andh read

n5
1

2
~v1v8!, t522vv8~12z!, h52vv8~11z!,

~2.9!

where v5k0, v85k08 are the photon energies,z5cosu is
the photon scattering angle, and

v85v1
t

2m
5vF11

v

m
~12z!G21

. ~2.10!

We will reserve the symbolsv, v8, andz for these lab-frame
variables. Note that in the lab frame,Nm5(0,N), whereN
5(m/2)k83k is orthogonal to the reaction plane.

In terms of theAi , the Compton scattering amplitudeTf i
in the lab frame assumes the following form:
Tf i5
1

N~ t !H 2me8* •e vv8F S 12
t

4m2D ~2A12A3!2
n2

m2
A52A6G

12ms8* •s vv8F S 12
t

4m2D ~A12A3!1
n2

m2
A52A6G

22i s•e8* 3e nvv8~A51A6!12i s•s8* 3s nvv8~A52A6!

1 i s• k̂ s8* •e v2v8FA21S 12
v8

m DA41
n

m
A51A6G

2 i s• k̂8 e8* •s vv82FA21S 11
v

mDA42
n

m
A51A6G

2 i s• k̂ e8* •s v2v8F2A21S 12
v8

m DA42
n

m
A51A6G

1 i s• k̂8 s8* •e vv82F2A21S 11
v

mDA41
n

m
A51A6G J , ~2.11!
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whereN(t)5(12t/4m2)1/2 and the two magnetic vectorss,
s8 are defined as

s5 k̂3e, s85 k̂83e8. ~2.12!

III. CROSS SECTIONS AND ASYMMETRIES

A. General structure of the cross section

We will consider the general structure of the cross sec
and double-polarization observables in four related reactio

gW NW→g8N8, ~3.1a!

gNW→gW 8N8, ~3.1b!

gW N→g8NW 8, ~3.1c!

gN→gW 8NW 8. ~3.1d!

We start by introducing the polarization variables.
Photon polarization properties are conveniently descri

in terms of the Stokes parametersj i ( i 51,2,3) @30# which
define the photon polarization matrix density as follows@31#:

^eaeb* &5
1

2
~11s•j!ab5

1

2S 11j3 j12 i j2

j11 i j2 12j3
D

ab

.

~3.2!

Here the photon polarization vectorem is taken in the radia-
tion gaugee• k̂50 and a,b51,2 denote either of two or
thogonal directionsxg ,yg which are in turn orthogonal to th
photon momentum directionzg5 k̂. Such a definition ofj i is
manifestly frame dependent; nevertheless, the quantities

j l5Aj1
21j3

2 ~3.3!

andj2 are Lorentz invariant. They give the degree of line
and circular polarization, respectively. Moreover,j2561
corresponds to the right~left! helicity state, provided thexyz
frame is right handed. The total degree of photon polari
tion is given byj5Aj1

21j2
21j3

2<1. The valuesj1 and j3

separately are frame dependent, although they are still inv
ant with respect to boosts or rotations in thexgzg-plane.
They define the anglew that the electric field makes with th
xgzg-plane:

cos 2w5
j3

j l
, sin 2w5

j1

j l
. ~3.4!

To fix the azimuthal freedom inj1 andj3, we first choose a
frame in which all the momentak, p, k8 andp8 are coplanar.
This choice is not too restrictive and includes both the
and c.m. frames. In such a frame and for any polarized p
ton, eitherg or g8, we take theyg axis in Eq.~3.2! to lie
along the direction ofk̂3 k̂8. Then the appropriatezg axis is
given by k̂ or k̂8, and thexg axis is directed along (k̂3 k̂8)
3 k̂ or (k̂3 k̂8)3 k̂8, respectively. The anglew in Eq. ~3.4!
gives the angle between the electric field and the reac
plane. Thus defined, the Stokes parameters do not depen
further specification of the frame and are the same in the
n
s:

d

r

-

ri-

b
o-

n
on
b

or c.m. frame. We will use the prime to distinguish th
Stokes parameters for initial or final photon,j i andj i8 .

Note that the above-defined Stokes parameters trans
under parity as

j1→
P

2j1 , j2→
P

2j2 , j3→
P

j3 , ~3.5!

under time inversion (k̂→2 k̂ e→2e* ) as

j1→
T

2j1 , j2→
T

j2 , j3→
T

j3 , ~3.6!

and under crossing (k̂→ k̂8 e→e8* ) as

j1→
cross

j18 , j2→
cross

2j28 , j3→
cross

j38 . ~3.7!

The nucleon polarization density matrix is specified by
polarization four-vectorS which is orthogonal to the nucleo
four-momentump @31#:

^u~p!ū~p!&5
1

2
~g•p1m!~11g5g•S!. ~3.8!

Introducing also the polarization three-vectorz in the
nucleon rest frame, one can relatez andS through the boost
transformation,

S5z1
S0

p01m
p, S05

p•S

p0
5

p•z

m
, ~3.9!

whereA2S25uzu<1 gives the degree of nucleon polariz
tion. We apply the notationsS, z, andS8, z8 for the initial
and final nucleons, respectively.

Note that the vectorsz, z8 are frame dependent and un
dergo Wigner rotation around they axis when a boost in the
reaction plane is applied. Nevertheless,z is the same in the
lab and c.m. frames, although that is not the case forz8.

In both the lab and c.m. frames, the differential cro
section of the reactions~3.1! reads

ds

dV
5F2uTf i u2 with F55

1

8pm

v8

v
, lab frame,

1

8pAs
, c.m. frame.

~3.10!

Here the square of the Lorentz-invariant matrix elementTf i ,
appropriately averaged and summed over polarizations,
the same generic form in all four cases~3.1!,

uTf i u25(
i 50

3

@W0i1K•SW1i1Q•SW2i1N•SW3i #j i ,

~3.11!

where we setj051, and for the moment we disregard o
tional primes distinguishing polarization variables for initi
and final particles. SinceS andN are axial vectors andj1, j2
have oddP parity, some of the invariant functionsWi j must
vanish:
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W015W025W105W135W205W235W315W3250.
~3.12!

In terms of the remainingWi j , the generic expression~3.11!
gets the following specific form for the individual cas
given in Eq.~3.1!:

uTf i~gW NW→g8N8!u25W001W03j31N•S~W301W33
1 j3!

1K•S~W11
1 j11W12

1 j2!

1Q•S~W21
1 j11W22

1 j2!,
~3.13a!

uTf i~gNW→gW 8N8!u25W001W03j381N•S~W301W33
2 j38!

1K•S~2W11
2 j181W12

2 j28!

1Q•S~W21
2 j182W22

2 j28!,
~3.13b!

uTf i~gW N→g8NW 8!u25W001W03j31N•S8~W301W33
2 j3!

1K•S8~W11
2 j11W12

2 j2!

1Q•S8~W21
2 j11W22

2 j2!,
~3.13c!
uTf i~gN→gW 8NW 8!u25W001W03j381N•S8~W301W33
1 j38!

1K•S8~2W11
1 j181W12

1 j28!

1Q•S8~W21
1 j182W22

1 j28!.
~3.13d!

Note that the same functionsWi j determine the cross sectio
in Eqs. ~3.13a! and ~3.13d! @as well as in Eqs.~3.13b! and
~3.13c!# which are related throughT invariance; the negative
signs in Eqs.~3.13b!, ~3.13d! are easily found from Eq.~3.6!.
The relationship between the cases~3.13a! and ~3.13b! is
determined by the crossing symmetry of the amplitudeTf i
and Eq.~3.7!:

W00~n,t !5W00~2n,t !, W03~n,t !5W03~2n,t !,

W30~n,t !52W30~2n,t !, W33
2 ~n,t !52W33

1 ~2n,t !,

~3.14!

W11
2 ~n,t !5W11

1 ~2n,t !, W12
2 ~n,t !5W12

1 ~2n,t !,

W21
2 ~n,t !5W21

1 ~2n,t !, W22
2 ~n,t !5W22

1 ~2n,t !.

In terms of the invariant amplitudesTi or Ai , the func-
tions Wi j read~cf. Ref. @32#!:
W005
1

2
~4m22t !~ uT1u21uT3u2!2

1

2
~s2m2!~u2m2!~ uT2u21uT4u2!1m~s2u! Re~T1T2* 1T3T4* !

2tuT5u21~m42su!uT6u2

5
1

4
~4m22t !~ t2uA1u21h2uA3u2!2

1

4
~ t3uA2u22h3uA4u2!2n2t~ t18n2!uA5u21

1

2
h~ t212m2h!uA6u2

1 Re H 2n2t2~A11A2!A5* 1
1

2
h2~4m2A31tA4!A6* J , ~3.15a!

W035
1

2
~4m22t !~ uT1u22uT3u2!2

1

2
~s2m2!~u2m2!~ uT2u22uT4u2!1m~s2u! Re~T1T2* 2T3T4* !

5
ht

2
Re$@~4m22t !A114n2A5#A3* 14m2A1A6* %, ~3.15b!

W30524 Im ~T1T2* 1T3T4* !

528n Im ~ tA1A5* 1hA3A6* !, ~3.15c!

W33
6 54 Im @2T1T2* 1T3T4* 62T5T6* #

5 Im H 28n@@ tA12~ t14n2!A5#A6* 1hA3A5* #6
2

m
~ tA224n2A5!~hA4* 1tA6* !J , ~3.15d!

W11
6 5 Im @~4m22t !~T11T3!T6* 1m~s2u!~T21T4!T6* 7t~T22T4!T5* #

5 Im H t

2m
@~4m22t !A114n2A5#~hA4* 1tA6* !62nt~ tA224n2A5!A6* J , ~3.15e!
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W12
6 5Re@~4m22t !~2T11T3!T6* 1m~s2u!~2T21T4!T6* 6t~T21T4!T5* #

5ReH 2
h

2m
@~4m22t !A314m2A6#~hA4* 1tA6* !62nt~ tA224n2A5!A5* J , ~3.15f!

W21
6 5Im@4m~T12T3!T5* 1~s2u!~T22T4!T5* 7mt~T21T4!T6* 6~s2u!~T11T3!T6* #

52Im$2m~ tA224n2A5!@hA3* 1~ t14n2!A6* #6n@ tA12~ t14n2!A5#~hA4* 1tA6* !%, ~3.15g!

W22
6 5Re@24m~T11T3!T5* 2~s2u!~T21T4!T5* 6mt~T22T4!T6* 7~s2u!~T12T3!T6* #

52Re$2mt~ tA224n2A5!A1* 7nhA3~hA4* 1tA6* !%. ~3.15h!
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Below the pion photoproduction threshold, the amplitud
Ti , Ai are real, and therefore only the six structures,W00,
W03, W12

6 , andW22
6 , are different from zero.

B. Asymmetries

The thirteen invariant quantitiesWi j standing in Eq.
~3.13! intervene directly in the definition of polarization ob
servables which can be measured experimentally. Not a
them are independent, since with six complex invariant a
plitudes there are only 11 independent observables. In
following we shall classify them according to the number
polarization degrees of freedom involved in the process.
shall define somen-index asymmetriesS i , Sa , and S ia ,
where i 5(1,2,3) or (18,28,38) refers to the photon Stoke
parametersj i or j i8 , anda5(xN ,yN ,zN) or (xN8 ,yN8 ,zN8 ) re-
fers to the right-handed axes along which the nucleon spz
or z8 may be aligned. At this point we have to relate t
products such asK•S, Q•S, and N•S in Eq. ~3.13! to the
spin vectorz ~or z8), and eventually fix a frame. We choos
the lab frame for practical reasons; for any other frame o
the coefficientsCx,z,x8,z8

K,Q introduced below have to be reca
culated. We will indicate all necessary changes to be d
for the c.m. frame.

Directing theyN andyN8 axes alongk3k8, we choose the

zN axis along the photon beam directionk̂. Note that since
zc.m.5zlab, all the asymmetries obtained in this way in th
lab frame for the reactions~3.1a!,~3.1b! with the polarized
nucleonN are the same in the c.m. frame. In the case of
polarized final nucleon, we choose thezN8 axis to lie along
the nucleon recoil momentump8. Such an axis depends o
whether we use the lab or c.m. frame so that we get differ
though related, asymmetries.

We can further simplify the notation. The axe
(xg ,yg ,zg) and (xN ,yN ,zN) are identical and we will denote
them in the following by simply (x,y,z). For (xN8 ,yN8 ,zN8 ) we
will use (x8,y8,z8). Note that, despite the fact that they and
y8 axes are the same, we will keep the prime when usingy8
because it identifies which nucleon (N or N8) we are refer-
ring to. All these axes are shown in Fig. 1.

The set of observables is defined as follows.
Polarization-independent observable (n50), or simply

the unpolarized cross section,

ds̄

dV
5F2W00. ~3.16!
s

of
-

he
f
e

y

e

e

t,

Single-polarization observables (n51), of which there
are two for each of the reactions~3.1!:

~i! The beam asymmetry for photons which are linea
polarized either parallel or perpendicular to the scatter
plane (j3561) and unpolarized nucleons~target and re-
coil!. The same quantity gives the degree of linear polari
tion (j38) of the photon scattered from unpolarized nucleo

S35S385S s i2s'

s i1s'D
z5z850

5S s i82s'8

s i81s'8D
z5z850

5
W03

W00

~3.17!

~the primed polarizationsi8 or '8 refer to the final photon
state!. This asymmetry is often designated asS.

~ii ! The target asymmetry or recoil polarization for unp
larized photons, whereby eitherN or N8 is polarized (zy or
zy8561) along the6y56y8 directions:

Sy5Sy85S sy2s2y

sy1s2y
D

j5j850

5S sy82s2y8

sy81s2y8
D

j5j850

5Cy
N W30

W00
. ~3.18!

Here the coefficient

FIG. 1. Axes to project out polarizations in the lab frame. T
variousy axes (yg , yN , yg8 , andyN8 ) all point out of the plane of
the figure.



o
ca
n
b

in

am
he
on

ns
tr

th
in
-

s.
on
f

1018 PRC 58BABUSCI, GIORDANO, L’VOV, MATONE, AND NATHAN
Cy
N5

m

2
vv8 sin u5

m

4
A2ht ~3.19!

~as given through both lab and invariant quantities! deter-
mines the scalar productN•S5Cy

Nzy . It is just the negative-
y component ofNm. The asymmetrySy5Sy8 is often des-
ignated asP, the recoil nucleon polarization.

Double-polarization observables (n52), of which there
are five for each of the reactions~3.1!:

~i! The beam-target asymmetry for incoming linearly p
larized photons, either parallel or perpendicular to the s
tering plane (j3561), and target nucleon polarized perpe
dicular to the scattering plane. The same quantity can
measured as the correlation of polarizations of the outgo
particlesg8 andN8:

S3y5S38y85
~s i2s'!y2~s i2s'!2y

~s i1s'!y1~s i1s'!2y

5
~s i82s'8!y82~s i82s'8!2y8

~s i81s'8!y81~s i81s'8!2y8

5Cy
N

W33
1

W00
.

~3.20!

Another independent quantity is the correlation of the be
polarization and the polarization of recoil nucleon, or t
correlation of the target polarization with the final phot
polarization:

S3y85S38y5
~s i2s'!y82~s i2s'!2y8

~s i1s'!y81~s i1s'!2y8

5
~s i82s'8!y2~s i82s'8!2y

~s i81s'8!y1~s i81s'8!2y

5Cy
N

W33
2

W00
.

~3.21!

~ii ! The asymmetries with circular photon polarizatio
(j2 or j28561). The general expression for the asymme
with circularly polarized photons follows from Eq.~3.13!.
For example, for the reaction~3.1a!

sR2sL

sR1sL
5

K•SW12
1 1Q•SW22

1

W001N•SW30
. ~3.22!

Such a quantity survives when the nucleon spin lies in
reaction plane. Considering the cases with the target spz
aligned in6x or 6z directions, we can introduce the beam
target asymmetries

S2x5
sx

R2sx
L

sx
R1sx

L
5

Cx
KW12

1 1Cx
QW22

1

W00
,

S2z5
sz

R2sz
L

sz
R1sz

L
5

Cz
KW12

1 1Cz
QW22

1

W00
~3.23!

and the scattered photon-target asymmetries
-
t-

-
e
g

y

e

S28x5
sx

R82sx
L8

sx
R81sx

L8
5

Cx
KW12

2 2Cx
QW22

2

W00
,

S28z5
sz

R82sz
L8

sz
R81sz

L8
5

Cz
KW12

2 2Cz
QW22

2

W00
. ~3.24!

Here the coefficientsCx,z
K,Q determine the scalar products

K•S5Cx
Kzx1Cz

Kzz , Q•S5Cx
Qzx1Cz

Qzz . ~3.25!

In terms of lab or invariant quantities, they read

Cx
K5Cx

Q52
1

2
v8 sin u52

mA2ht

2~s2m2!
,

Cz
K52

1

2
~v1v8 cosu!52

s2m2

2m
2

t~s1m2!

4m~s2m2!
,

~3.26!

Cz
Q5

1

2
~v2v8 cosu!52

t~s1m2!

4m~s2m2!
.

Numerically,Cx,z
K,Q are the same in the lab and c.m. frame

Another four asymmetries, which are depend linearly
those in Eqs.~3.23! and ~3.24!, describe the correlations o
the recoil polarization with the polarization of the photonsg
or g8:

S2x85
sx8

R
2sx8

L

sx8
R

1sx8
L 5

Cx8
K W12

2 1Cx8
Q W22

2

W00
,

S2z85
sz8

R
2sz8

L

sz8
R

1sz8
L 5

Cz8
K W12

2 1Cz8
Q W22

2

W00
,

~3.27!

S28x85
sx8

R82sx8
L8

sx8
R81sx8

L8
5

Cx8
K W12

1 2Cx8
Q W22

1

W00
,

S28z85
sz8

R82sz8
L8

sz8
R81sz8

L8
5

Cz8
K W12

1 2Cz8
Q W22

1

W00
.

They are given by the coefficientsCx8,z8
K,Q appearing in the

expansions

K•S85Cx8
K zx8

8 1Cz8
K zz8

8 , Q•S85Cx8
Q zx8

8 1Cz8
Q zz8

8 ,
~3.28!

which in the lab frame read

Cx8
K

52
Ah

2N~ t !
, Cx8

Q
50, Cz8

K
5

nA2t

2mN~ t !
,

Cz8
Q

5
A2t

2
N~ t ! ~ lab!, ~3.29!
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where N(t)5(12t/4m2)1/2. Since thez8 axis in the c.m.
frame is different from that in the lab frame, the correspon
ing Cx8,z8

K,Q are different too. Except for the signs, they coi
cide with Cx,y

K,Q in Eq. ~3.26!:

Cx8
K

52Cx8
Q

5Cx
K5Cx

Q , Cz8
K

52Cz
K ,

Cz8
Q

5Cz
Q ~c.m.!. ~3.30!

~iii ! The asymmetries with photons linearly polarized
w56p/4 with respect to the scattering plane (j1561). For
example, in the case~3.1a!,

sp/42s2p/4

sp/41s2p/4
5

K•SW11
1 1Q•SW21

1

W001N•SW30
. ~3.31!

With the same considerations discussed for Eq.~3.23!, one
can define the asymmetries

S1x5
sx

p/42sx
2p/4

sx
p/41sx

2p/4
5

Cx
KW11

1 1Cx
QW21

1

W00

S1z5
sz

p/42sz
2p/4

sz
p/41sz

2p/4
5

Cz
KW11

1 1Cz
QW21

1

W00
,

~3.32!

S18x5
sx

p/482sx
2p/48

sx
p/481sx

2p/48
5

2Cx
KW11

2 1Cx
QW21

2

W00
,

S18z5
sz

p/482sz
2p/48

sz
p/481sz

2p/48
5

2Cz
KW11

2 1Cz
QW21

2

W00
,

and a similar linearly dependent set

S1x85
sx8

p/4
2sx8

2p/4

sx8
p/4

1sx8
2p/45

Cx8
K W11

2 1Cx8
Q W21

2

W00
,

S1z85
sz8

p/4
2sz8

2p/4

sz8
p/4

1sz8
2p/45

Cz8
K W11

2 1Cz8
Q W21

2

W00
,

~3.33!

S18x85
sx8

p/482sx8
2p/48

sx8
p/481sx8

2p/48
5

2Cx8
K W11

1 1Cx8
Q W21

1

W00
,

S18z85
sz8

p/482sz8
2p/48

sz8
p/481sz8

2p/48
5

2Cz8
K W11

1 1Cz8
Q W21

1

W00
.

One can get another representation~with x→2x, etc.! for
the above asymmetries by using the following relatio
among the cross sections that have opposite in-plane nuc
~target or recoil! polarizations:

s i
R5s2 i

L , s i
w5s2 i

2w , ~ i 56x,6z,6x8,6z8!
~3.34!
-

t

s
on

and similarly for the primed cross sections~with the polar-
ized final photon!. These relations are due to parity conse
vation.

Introducing the generic quantities

F15
sp/42s2p/4

2s̄
5S1xzx1S1zzz ,

F25
sR2sL

2s̄
5S2xzx1S2zzz , ~3.35!

F35
s i2s'

2s̄
5S31S3yzy ,

one can write the differential cross section in the followi
compact form:

ds

dV
5

ds̄

dV
$11Syzy1F•j%, ~3.36!

which, being supplied with appropriated primes, is valid f
any combination of ingoing or outgoing polarized particle

Thus, with unpolarized and linearly polarized initial o
final photons, one can access two observables:ds̄/dV and
S3, respectively. When the nucleon~target or recoil! polar-
ization is added, four more asymmetries appear,Sy andS1x ,
S1z , S3y ~and their primed companions!, all of which vanish
below the pion threshold. When circularly polarized photo
are used with polarized nucleons, two more asymmetries
pear,S2x and S2z , both of which survive below the pion
threshold.

It is important to emphasize that the formulas such
~3.10! and ~3.36!, being used for polarized particle~s! in the
final state, give the total yield of the particles and their p
larization density matrix. To get a partial cross section o
particle produced with specific final polarization~s!, one must
use an average instead of a sum over polarizations. Th
equivalent to inserting the statistical factor 1/g into these
formulas, whereg51,2,2,4 for the cases~3.1a!–~3.1d!, re-
spectively.

IV. LOW-ENERGY EXPANSIONS

A. Invariant amplitudes and polarizabilities

A very general method for obtaining low-energy expa
sions of physical amplitudes for different reactions cons
in introducing invariant amplitudes free from kinematic
singularities and constraints and expanding them in a po
series@33,34#. Following this method, we first decompos
the invariant amplitudesAi into Born and non-Born contri-
butions,

Ai~n,t !5Ai
B~n,t !1Ai

NB~n,t ! ~ i 51, . . . 6!. ~4.1!

The Born contribution is associated with pole diagrams
volving a single nucleon exchanged ins- or u-channels and
gNN vertices taken in the on-shell regime,

Gm~p8,p!5qgm2
k

4m
@gm ,g•~p82p!#. ~4.2!
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It is completely specified by the massm, the electric charge
eq, and the anomalous magnetic momentek/2m of the
nucleon:

Ai
B~n,t !5

me2r i

~s2m2!~u2m2!
52

e2r i

4mvv8
, ~4.3!

wheree is the elementary charge,e2.4p/137, andq51,0
for the proton and neutron, respectively. The pole residuer i
read

r 1522q21r 3

t

4m2
, r 252qk12q21r 3

t

4m2
,

r 35r 55k212qk, r 45k2, r 6522q22r 3 . ~4.4!

The Born contribution toTf i possesses all the symmetries
the total amplitudeTf i , including gauge invariance, an
takes all singularities ofTf i at low energies.

The non-Born partsAi
NB of the invariant amplitudes

which contain all the structure-dependent information,
regular functions ofn2 andt and can be expanded as a pow
series inn2 and t. Since

t522vv8~12z!, n25vv81
t2

16m2
, ~4.5!

such an expansion can be recast as a power series in
cross-even parametervv8:

Ai
NB~n,t !5ai1vv8~ai ,n22~12z!ai ,t!1•••. ~4.6!

Here the low-energy constants

ai5Ai
NB~0,0!, ai ,n5S ]Ai

NB

]n2 D
n5t50

,

ai ,t5S ]Ai
NB

]t D
n5t50

, . . . ~4.7!

parametrize the structure of the nucleon as seen in its t
photon interactions.

The expansion~4.6! directly leads to a correspondin
low-energy expansion of the total amplitudeTf i in the lab
frame. We first consider the spin-independent part of
~2.11!. The spin-independent part of the Born termTf i

B fol-
lows from Eq.~2.11!:

N~ t !

8pm
Tf i

B,nospin

5r 0e8* •e H 2q21
vv8

4m2
@k212qk2q2~12z!#J

1r 0s8* •s
vv8

4m2
@q22z~k1q!2#. ~4.8!

Herer 05e2/4pm. The leading term in Eq.~4.8! reproduces
the Thomson limit,
e
r

the

o-

.

1

8pm
Tf i

Thomson52r 0q2e8* •e . ~4.9!

The non-Born contribution toTf i is determined by the
structure constants introduced in the expansion~4.6!. Its
spin-independent part starts with avv8 term,

1

8pm
Tf i

NB,nospin5vv8~aEe8* •e 1bMs8* •s !1O~v2v82!.

~4.10!

Here the constantsaE andbM ,

4paE52a32a62a1 , 4pbM52a32a61a1 ,
~4.11!

are identified as the dipole electric and magnetic polariza
ities of the nucleon, just in accordance with anO(v2) effec-
tive dipole interaction

Heff
~2!,nospin52

1

2
4p~aEE21bMH2! ~4.12!

of the nucleon with external electric and magnetic field
leading to the amplitude~4.10!. Due to its interference with
the Thomson amplitude~4.9!, the contribution of the polar-
izabilities, Eq.~4.10!, results in aO(v2) effect in the differ-
ential cross sectionds̄/dV in the case of the proton (q
51) and in aO(v4) effect in the case of the neutron (q
50).

The O(v4) terms in Eq.~4.10! are also easily read ou
from Eqs.~2.11! and ~4.6!. They are determined by the d
pole polarizabilities and the following combinations ofn-
andt-derivative constantsai ,n andai ,t of the amplitudesA1,
A3 andA6:

4pan52a3,n2a6,n2a1,n2
a5

m2
,

4pbn52a3,n2a6,n1a1,n1
a5

m2
,

~4.13!

4pa t52a3,t2a6,t2a1,t1
a3

4m2
,

4pb t52a3,t2a6,t1a1,t1
a3

4m2
.

These polarizability-like quantities are constant coefficie
of energy- and angle-dependent corrections to the dipole
teraction ~4.12! that enter to next order in photon energ
The recoil correction;1/m2 in Eqs. ~4.13! is explained in
Appendix C.

We now introduce linear combinations of the paramet
~4.13! which have a more direct physical meaning. If w
consider the partial-wave structure of the amplitudeTf i ~see
Appendix A!, we can relate thet-derivative constants in Eq
~4.13! to the quadrupole polarizabilites of the nucleon@25#:
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aE2512a t , bM2512b t . ~4.14!

A nonrelativistic example is given in Appendix B. The qua
tities

aEn5an22a t1b t , bMn5bn22b t1a t , ~4.15!

which we call ‘‘dispersion polarizabilities,’’ describe thev
dependence of the dynamic dipole polarizabilities. In ter
of the parametersaE2, bM2, aEn , andbEn , the correspond-
ing effective interaction ofO(v4) has the form

Heff
~4!,nospin52

1

2
4p~aEnĖ21bMnḢ2!

2
1

12
4p~aE2Ei j

2 1bM2Hi j
2 !, ~4.16!

where the dots mean a time derivative and

Ei j 5
1

2
~¹ iEj1¹ jEi !, Hi j 5

1

2
~¹ iH j1¹ jHi !

~4.17!

are the quadrupole strengths of the electric and magn
fields.

We next consider the spin-dependent part of Eq.~2.11!.
The spin-dependent part ofTf i starts withO(v) terms that
come from the Born contribution. To leading order one h
@35#

1

8pm
Tf i

B,,spin52 ir 0

n

2m
~q2s•e8* 3e 1~k1q!2s•s8* 3s !

1 ir 0q
k1q

2m
~v8s• k̂8 s8* •e 2vs• k̂ e8* •s !

1O~v2!. ~4.18!

The omitted higher-order terms can be read out from E
~2.11! and ~4.3!.

As shown in Eq.~2.11!, the non-Born part ofTf i
spin starts

with O(v3) terms. They are determined by the four co
stantsa2, a4, a5, anda6. Due to their interference with the
spin-dependentO(v) terms of Eq.~4.18!, they give rise to a
O(v4) correction to the unpolarized cross section. In t
case of a polarized proton and a circularly polarized phot
these terms appear at the orderO(v3).

TheO(v3) terms inTf i
NB,spin were considered in severa

papers@21–23#. In the most recent~and best known! work
@23# they are parametrized as

1

8pm
Tf i

NB,spin5 iv3g1s•e8* 3e

1 iv3g2~s• k̂83 k̂ e8* •e 2s•e8* 3e k̂8• k̂ !

1 iv3g3~s•s e8* • k̂ 2s•s8 e• k̂8 !

1 iv3g4~s•e8* 3 k̂ e• k̂8 2s•e3 k̂8 e8* • k̂

22s•e8* 3e k̂8• k̂ !1O~v4!, ~4.19!
s

tic

s

s.

-

e
n,

where g i are structure parameters~often called the ‘‘spin
polarizabilities’’! which are linear combinations of the con
stantsai ~see Appendix A!. In the following we consider a
linear combination of these parameters:

gE152g12g35
1

8pm
~a62a412a51a2!,

gM15g45
1

8pm
~a62a422a52a2!,

~4.20!

gE25g21g452
1

8pm
~a41a61a2!,

gM25g352
1

8pm
~a41a62a2!,

which have a more transparent physical meaning, as
plained in Appendixes A and B. The parametersgE1 and
gM1 describe the spin dependence of the dipole electric
magnetic photon scattering,E1→E1 and M1→M1,
whereasgE2 andgM2 describe the dipole-quadrupole amp
tudesM1→E2 andE1→M2, respectively. The amplitude
~4.19! implies an effective spin-dependent interaction of o
derO(v3)

Heff
~3!,spin52

1

2
4p~gE1s•E3Ė1gM1s•H3Ḣ

22gE2Ei j s iH j12gM2Hi j s iEj !. ~4.21!

To summarize, we have obtained a low-energy expans
of the amplitudes for nucleon Compton scattering.
O(v4), the cross section and polarization observables
determined by 10 polarizability parameters:~i! Two dipole
polarizabilities:aE and bM , ~ii ! two dispersion corrections
to the dipole polarizabilities:aEn and bMn , ~iii ! two quad-
rupole polarizabilities:aE2 andbM2 , and~iv! four spin po-
larizabilities: gE1, gM1, gE2, gM2. These polarizabilities
have a simple physical interpretation in terms of the inter
tion of the nucleon with an external electromagnetic fie
Equivalently, these ten parameters are linear combination
the low-energy constants, Eq.~4.7!, representing the zero
energy limit of the six invariant amplitudesAi plus two com-
binations of both then andt derivatives of these amplitudes

To illustrate the interplay among all these polarizabilitie
we consider the two limiting cases of forward and backwa
scattering.

~i! The amplitude for forward scattering,

1

8pm
@Tf i #u505

v2

2pS 2e8* •e ~A31A6!

1
v

m
i s•e8* 3e A4D , ~4.22!

has the following low-energy decomposition:
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1

8pm
@Tf i #u505e8* •e @2r 0q21v2~aE1bM !

1v4~an1bn!1O~v6!#

1 ivs•e8* 3e S 2
r 0k2

2m
1v2g1O~v4! D ,

~4.23!

where

g52gE12gM12gE22gM25
a4

2pm
~4.24!

is the ‘‘forward-angle spin polarizability,’’ and

an1bn5aEn1bMn1 1
12 aE21 1

12 bM252
1

2p
~a3,n1a6,n!.

~4.25!

~ii ! The amplitude for backward scattering,

1

8pm
@Tf i #u5p52

vv8

2pN~ t !H e8* •e S 12
t

4m2D
3S A12

t

4m2
A5D

1 i
n

m
s•e8* 3e FA21S 12

t

4m2D A5G J
~4.26!
has the following low-energy decomposition:

1

8pm
@Tf i #u5p

5N~ t !e8* •e $2r 0q21vv8~aE2bM !

1v2v82~an2bn24a t14b t!1O~v3v83!%

1 iAvv8s•e8* 3e H r 0

2m
~k214qk12q2!

1vv8gp1O~v2v82!J , ~4.27!

where

gp52gE11gM11gE22gM252
a21a5

2pm
~4.28!

is the ‘‘backward-angle spin polarizability,’’ and

an2bn24a t14b t5aEn2bMn2 1
12 aE21 1

12 bM2

5
1

2pS 4a1,t2a1,n2
a5

m2D . ~4.29!

B. Cross sections

A decomposition analogous to Eq.~4.1! can be applied
also to the invariant functionsWi j :

Wi j 5Wi j
B1Wi j

NB . ~4.30!

The Born contribution is given by
1

~8pm!2
W00

B 5
r 0

2

2 H q4~11z2!1
vv8

4m2
@4q3~q12k!~12z!212q2~9210z1z2!k214q~322z2z2!k31~32z2!k4#J ,

~4.31a!

1

~8pm!2
W03

B 52
r 0

2

2
~12z2!Fq41

vv8

4m2
~k212qk!2G , ~4.31b!

1

~8pm!2
W12

6,B5
r 0

2

2mH ~11z!Fq22
vv8

4m2
~12z!~k212qk!G @k21q~12z!~q1k!#

6
n

2m
~12z!~k212qk!@k212qk1q~12z!~q1k!#J , ~4.31c!

1

~8pm!2
W22

6,B5
r 0

2

2mH ~12z!Fq21
vv8

4m2
~12z!~k212qk!G @k212qk1q~12z!~q1k!#

7
n

2m
~11z!~k212qk!@k21q~12z!~q1k!#J . ~4.31d!

The non-Born contributions are more conveniently written by separating the terms of different order invv8. In particular, for
W00 andW03 we have
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W0k
NB5U0k

~2!vv81U0k
~4!v2v821O~v3v83! ~k50,3!, ~4.32!

where

1

~8pm!2
U00

~2!52r 0q2@~11z2!aE12zbM#, ~4.33a!

1

~8pm!2
U03

~2!5r 0q2~12z2!aE , ~4.33b!

1

~8pm!2
U00

~4!5
1

2
~11z2!~aE

21bM
2 !12zaEbM1

r 0

4m2
~12z!@~11z!~k212qk!~aE1zbM !12q2

„2zaE1~11z2!bM…#

2r 0q2F ~11z2!aEn12zbMn1
z3

6
aE21

3z221

12
bM2G1

r 0

2m
P~z!, ~4.33c!

1

~8pm!2
U03

~4!5~12z2!H 2
1

2
~aE

22bM
2 !2

r 0

4m2
~k212qk!~aE1zbM !1r 0q2FaEn1

z

6
aE22

1

12
bM2G1

r 0

2m
RJ .

~4.33d!
la

t
lti-
HereP(z) andR are polynomials inz of the third and zero
order, respectively, which are determined by the spin po
izabilities as follows:

P~z!5@q2~112z23z2!22qk~12z!212k2z#gE1

1@~q212qk!~322z2z2!1k2~32z2!#gM1

1@2q2~123z212z3!22qk~11z23z21z3!

1k2~3z221!#gE2

1@2q2~12z!214qk~z2z2!12k2z#gM2 ,

~4.34!
r-
and

R5q2~gE12gM2!2~k1q!2~gM12gE2!. ~4.35!

For the invariantsW12 andW22 we can stop the expansion a
O(v3), since they appear in the squared amplitude mu
plied by terms ofO(v). Therefore we have

Wk2
6,NB5Uk2

~2!vv86Uk2
~3!nvv81O~v2v82! ~k51,2!,

~4.36!

where
1

~8pm!2
U12

~2!52
r 0

2m
~11z!@k21q~12z!~k1q!#~aE1bM !1r 0q2~11z!@gE11gM11z~gE21gM2!#, ~4.37a!

1

~8pm!2
U22

~2!52
r 0

2m
~12z!@k212qk1q~12z!~k1q!#~aE2bM !2r 0q2~12z!@gE12gM11z~gE22gM2!#,

~4.37b!

1

~8pm!2
U12

~3!52
r 0

2m
~12z!$@2k214qk1q~12z!~k1q!#~gE12gM1!

1@~k212qk!~11z!1q~12z!~k1q!#~gE22gM2!%, ~4.37c!

1

~8pm!2
U22

~3!52
r 0

2m
~11z!H @k21q~12z!~k1q!#

aE1bM

m
1~k1q!@2k1q~12z!#~gE11gM1!

2@~k1q!2~12z!2qk~11z!#~gE21gM2!J . ~4.37d!
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In order to illustrate the interplay between polarizabiliti
and the cross sections~in the lab frame!, we consider below
the case of polarized photon beam and polarized targetu
50, p/2, andp.

~i! Forward scattering:

F ds̄

dV
G

u50

5@r 0q22v2~aE1bM !#21r 0
2 v2

4m2
k4

22r 0q2v4~aEn1bMn1 1
12 aE21 1

12 bM2!

2r 0

v4

m
k2g1O~v6! ~4.38!

and

FS2z

ds̄

dV
G

u50

52r 0
2q2

v

m
k21r 0

v3

m
k2~aE1bM !

12r 0q2v3g1O~v5!, ~4.39!

whereg is the forward-angle spin polarizability~4.24!.
~ii ! Backward scattering:
F ds̄

dV
G

u5p

5S v8

v D 2H q2S 11
vv8

m2 D
3@r 0

2q222r 0vv8~aE2bM !#

1r 0
2 vv8

4m2
~k214kq12q2!2

1v2v82~aE2bM !222r 0q2v2v82

3~aEn2bMn2 1
12 aE21 1

12 bM2!

1r 0

v2v82

m
~k214kq12q2!gpJ 1O~v6!

~4.40!

and

FS2z

ds̄

dV
G

u5p

5nS v8

v D 2H r 0

m
~k214kq12q2!

3@r 0q22vv8~aE2bM !#12r 0q2vv8gpJ
1O~v5!, ~4.41!

wheregp is the backward-angle spin polarizability~4.28!.
~iii ! At 90°:
F ds̄

dV
G

u5p/2

5S v8

v D 2H r 0
2

2 Fq41
vv8

4m2
~3~k1q!424kq31q4!G2r 0vv8aEFq22

vv8

4m2
~k212kq!G1r 0q2

v2v82

2m2
bM

1
1

2
v2v82~aE

21bM
2 !2r 0q2v2v82S aEn2

1

12
bM2D

1
r 0

2m
v2v82@2~2kq2q2!gE11~k1q!2~3gM12gE2!2q2gM2#J 1O~v6!, ~4.42!

FS3

ds̄

dV
G

u5p/2

5S v8

v D 2H 2
r 0

2

2 Fq41
vv8

4m2
~k212kq!2G1r 0vv8aEFq22

vv8

4m2
~k212kq!G2

1

2
v2v82~aE

22bM
2 !

1r 0q2v2v82S aEn2
1

12
bM2D1

r 0

2m
v2v82@q2~gE12gM2!2~k1q!2~gM12gE2!#J 1O~v6!, ~4.43!

FS2z

ds̄

dV
G

u5p/2

5S v8

v D 2

r 0vH r 0

2mFkq32
v8

4m
~k212kq!~k1q!2G

1
vv8

2m
@~k1q!2bM2kqaE#2

n

4m2
vv8~k21kq1q2!~aE1bM !2q2vv8gE1

1
n

2m
vv8@kq~gE12gM2!2~2k214kq1q2!gM11~k1q!2gE2#J 1O~v5!, ~4.44!
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FS2x

ds̄

dV
G

u5p/2

5S v8

v D 2

r 0v8H 2
r 0

2mFq2~k1q!21
v

4m
k2~kq12q2!G

1
vv8

2m
@~k1q!2aE2kqbM#1

n

4m2
vv8~k21kq1q2!~aE1bM !2q2vv8gM1

2
n

2m
vv8@kq~gM12gE2!2~2k214kq1q2!gE11~k1q!2gM2#J 1O~v5!. ~4.45!
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For the low-energy expansion of the amplitudes and str
ture functions, two further remarks must be considered. F
as is evident from Eq.~2.3!, the t-channelp0 exchange con-
tributes only toT5 ~and thus only toA2). Owing to the small
pion massmp0, this diagram is a rapidly varying function o
t and therefore it is profitable to keep its expression un
panded. This can be achieved with the following replacem
in the non-Born part of the amplitudeA2:

A2
NB~n,t !5A2

p0
~ t !2A2

p0
~0!1Ā2

NB~n,t !, ~4.46!

where

A2
p0

~ t !5
2

t
T5

p0
~ t !5

gpNNFp0gg

t2mp0
2 t3 , ~4.47!

with t351 or 21 for the proton and neutron, respective
and where

Gp0→gg5
mp0

3

64p
Fp0gg

2 ~4.48!

is the p0 two-photon decay width. The relative sign of th
pNN couplinggpNN and thep0gg couplingFp0gg is nega-
tive. In Eq. ~4.46!, Ā2

NB is a smoother function ofn,t than
A2

NB and is better approximated by a polynomial invv8
~which is just the constanta2 to the order we consider!. In
terms of the spin polarizabilities, this means that the follo
ing substitutions have to be done in all the expansions:

gE1→gE11X2af ~ t !, gE2→gE22X2af ~ t !,

gM1→gM12X2af ~ t !, gM2→gM21X2af ~ t !, ~4.49!

where

X2a5
A2

p0
~0!

8pm
, f ~ t !5

t

mp0
2

2t
. ~4.50!

Generally, after the separation of thep0-exchange contribu-
tion, all the low-energy expansions discussed in this sec
become valid providedvv8/mp

2 is a small parameter. Th
radius of convergence of thevv8 series is, up to a smal
correction of orderO(mp /m), equal to

uvu<mp ~4.51!
c-
t,

-
nt

-

n

and is determined by the pion photo-production thresh
where the amplitudes have a singularity and acquire
imaginary part. Another close singularity is due to t
t-channel exchange of two pions, which gives the same
striction ~4.51!.

The second remark is that the low-energy expansions
the structure functionsWi j , when used within the radius o
convergence, give an accurate account of the dependen
the cross sections on the dipole polarizabilitiesaE , bM , and
the spin polarizabilitiesgE1, gM1, gE2, gM2. In the expres-
sions forW12

6 andW22
6 , the spin polarizabilities enter to lead

ing orderO(vv8) as an interference with the Thomson am
plitude ~4.9!. The subleading terms of orderO(nvv8)
appear due to interference with the amplitude~4.18!. Nu-
merically the latter terms are enhanced by the anoma
magnetic moment@for example, k214qk12q2512.4 in
Eq. ~4.27! for the proton# and are as important as the leadin
terms. On the other hand, in the expansions forWi j , the
leading order contribution of the quadrupole and dispers
polarizabilities aE2, bM2, aEn , bMn are already of order
O(v2v82), which is the highest order included in the expa
sion. Therefore the subleading terms which describe the
terference of these polarizabilities with the amplitude~4.18!
are not included, although they may be comparable in m
nitude to the leading terms. For this reason, it is gener
more accurate to use low-energy expansions for the invar
amplitudesAi(n,t), including all ten polarizabilities that ap
pear to the order considered, and then to calculate the s
ture functionsWi j through Eqs.~3.15!. This more accurate
procedure will be used when we discuss the low-energy
servables in Sec. V.

In principle, all the polarizabilities we have defined can
determined from experiment. For example, in the proton c
once the dipole polarizabilitiesaE andbM have been deter
mined @from low-energy experiments that are sensitive on
to terms of orderO(v2)#, the angular behavior of the coe
ficients W12 and W22 ~from the measurements ofS2x and
S2z) enables a determination of all the spin polarizabiliti
gE1, gM1, gE2, gM2. Then the angular dependence of t
unpolarized cross section allows one to determine the
maining polarizabilitiesaE2, bM2, aEn , bMn . In the next
section, we investigate the feasibility of this approach.

V. DISCUSSION

In this section we summarize some theoretical predicti
for the polarizabilities, examine the question of convergen
of the low-energy expansion, and discuss the sensitivity
various observables to these polarizabilities.
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A. Theoretical predictions for polarizabilities

We now consider various theoretical predictions for t
polarizabilities in order to establish the accuracy that sho
be achieved in experiments to make them useful for res
ing theoretical ambiguities. We restrict ourselves to e
mates based on chiral perturbation theory and dispersion
lations, since these have proved to be successful
applications to strong and electromagnetic interactions
hadrons at low energies.

In its standard form, chiral perturbation theory giv
leading-order~LO! predictions for the polarizabilities en
tirely in terms of the pion massmp , the axial coupling con-
stant of the nucleon,gA51.257360.0028, and the pion de
cay constantf p592.460.3 MeV. The nucleon massm
which describes recoil corrections does not enter into the
predictions but appears in the next-to-leading order toge
with some additional parameters. The LO-contributio
dominate in the chiral limitmp→0 and are expected to pro
vide semiquantitative estimates in the real world. All resu
quoted here were obtained by Bernardet al., as summarized
in Ref. @13#. Using explicit formulas from that work, we
have

aE
~LO!510X1 , bM

~LO!5X1 ,

aEn
~LO!5

3

4
X3 , bMn

~LO!5
7

6
X3 ,

aE2
~LO!57X3 , bM2

~LO!523X3 , ~5.1!

gE1
~LO!525X21X2a , gM1

~LO!52X22X2a ,

gE2
~LO!5X22X2a , gM2

~LO!5X21X2a .

Here the quantitiesXi are proportional toi th powers of the
inverse pion mass:

X15
E2

24mp
51.2331024 fm3,

X25
E2

12pmp
2

51.1131024 fm4,

X2a5
E2t3

pgAmp0
2 5611.331024 fm4,

X35
E2

20mp
3

52.9631024 fm5, ~5.2!

whereE5egAA2/(8p f p) is the threshold photoproductio
amplitude for charged pions in the chiral limit. Since t
valuesX1, X2, X3 are determined by pion loops with charge
pions, we use the charged pion massmp5139.57 MeV for
obtaining numbers for theseX’s. The terms withX2a de-
ld
v-
i-
e-
in
f

O
er
s

s

scribe thep0 exchange~4.47! with couplings fixed by the
chiral anomaly ~Wess-Zumino-Witten! and by the
Goldberger-Treiman relation:

Fp0gg52
e2Nc

12p2f p

, gpNN5gA

m

f p
. ~5.3!

where Nc53. Accordingly, we use the neutral pion ma
mp05134.97 MeV to evaluateX2a .1

Calculation to the next order~s! involves new parameter
~counterterms! that are usually estimated via an approxim
tion that takes into account the nearest resonances an
loops with strange particles. Such a procedure may lea
rather different results for polarizabilities, depending on fu
ther details~for example, compare Ref.@13# and Ref.@14#;
see also below!. Among the nucleon resonances, t
D(1232) is special because it is separated from the nuc
by a relatively small energy gapD5mD(1232)2m.2mp and
has a large coupling to thepN channel. Therefore this reso
nance is particularly important for low-energy phenome
such as the polarizabilities. In Refs.@14,36#, the D(1232)
was considered as a partner of the nucleon in the chiral
pansion, which was reformulated in terms of a generic sm
energy scalee5O(mp ,D). In the following we invoke only
one component of such an approach, theD(1232)-pole con-
tribution. We ignore the contribution of pion loops with a
intermediateD(1232). These terms are relatively small f
the spin polarizabilities, although large foraE andbM . We
take into account bothM1 andE2 couplings of theD. Al-
though the quadrupole contribution is of higher order ine,
numerically it is not negligible for the spin polarizabilit
gE2. For theD-pole contribution we have

4pbM
~D!5

2mND
2

D
, 4pbMn

~D!5
2mND

2

D3
, 4paE2

~D!5
QND

2

2D
,

4pgM1
~D!5

mND
2

D2
, 4pgE2

~D!5
2mNDQND

2D
~5.4!

~and nothing for the other polarizabilities, as discussed
detail in Appendix D!. HeremND andQND are the magnetic
and quadrupole transition moments, respectively. Depend
on how theM1-coupling is extracted from the experiment
radiative width of theD ~with relativistic or nonrelativistic
phase space!, theD-pole contribution tobM was evaluated in
@14,36# as

bM
~D!512.0 @14# or 7.2 @36# ~5.5!

1In principle, the difference between the masses ofp1 and p0

runs beyond the accuracy of leading-order predictions. Its con
tent treatment has to involve radiative corrections ofO(e2). How-
ever, we assume that the use of the experimental masses o
pions in the present context still makes sense because this is
pected to reduce the size of the counterterm contributions that c
from the full treatment.
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TABLE I. Polarizabilities of the nucleon given by chiral perturbation theory to leading order inmp ~the
columns labeledp0 and ‘‘loop’’ @13,24#!. Also theD-pole contribution is given with the larger strength
Eq. ~5.5! ~see discussion in text!. Other predictions are based on dispersion relations@19,42#. Separately
given are thep0-exchange contribution (A2

as) and the contribution of excitations. The set HDT@42# uses pion
photoproduction multipoles of Hansteinet al. @43#. The setSAID is the result of the present work based on t
solution SP97K@41#. In the columnsp0 andA2

as, the proton or neutron case corresponds tot351 or 21,
respectively.

CHPT D pole Dispersion relations
~leading order! A2

as excitations1A1
as

proton neutron
p0 loop HDT SAID HDT SAID

aE 12.3 11.9a,c 13.3b,c

bM 1.2 12.0 1.9a,c 1.8b,c

(1024 fm3)
aEn 2.2 23.8 22.4
bMn 3.5 5.3 9.1 9.2
aE2 20.7 0.2 27.5 27.2
bM2 28.9 222.4 223.5
(1024 fm5)

gE1 11.3t3 25.5 11.2t3 24.5 23.4 25.5 25.6
gM1 211.3t3 21.1 4.0 211.2t3 3.4 2.7 3.4 3.8
gE2 211.3t3 1.1 0.75 211.2t3 2.3 1.9 2.6 2.9
gM2 11.3t3 1.1 11.2t3 20.6 0.3 20.6 20.7
g 4.4 24.8 20.6 21.5 20.2 20.4
gp 245.3t3 4.4 4.8 245.0t3 10.8 7.8d 12.1 13.0
(1024 fm4)

aExperimental values for the proton areaE512.161, bM52.171 @3#.
bExperimental values for the neutron areaE512.662.5 @44# and 065 @45#. See also the criticism of the
former result in Ref.@46#.
caE2bM510.0 and 11.5 is used as input for the proton and neutron, respectively. This guarante
A1

as(0) is the same for the proton and neutron.
dExperimental value reported for the non-p0 part of gp for the proton is 17.363.4 @26#.
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~units are 1024 fm3).2 With the generally accepted phenom
enological magnitude ofmND ~see, for example,@37#!, bM

(D)

.(12213) @29,38#. In the Skyrme model@39# or large-Nc
QCD @40#, the transition magnetic moment is related to t
isovector magnetic moment of the nucleon asmND5A2mN

V

53.33(e/2m), so thatbM
(D)512.0. All these contributions ar

summarized in Table I, where the larger magnitude of
~5.5! has been assumed. With the fixed ratioQND /mND5
20.25 fm ~see Appendix D!, the use of the other valu
would reduce all theD-pole contributions by 40%.

Another way to calculate the polarizabilities is provid
by dispersion relations for the amplitudesAi(n,t). In the
following we give results of the fixed-t dispersion relations
which have the form@19#

ReAi~n,t !5Ai
B~n,t !1

2

p
PE

n thr

nmax
Im Ai~n8,t !

n8dn8

n822n2

1Ai
as~ t !. ~5.6!

2This difference also illustrates how estimates of counterte
may depend on assumptions.
.

Here the dispersion integral is taken from the pion photop
duction threshold to some large energy~actually, it is 1.5
GeV!. The remaining so-called asymptotic contribution ist
dependent but only weakly energy dependent. From uni
ity, the imaginary part of the amplitudesAi and the integral
in Eq. ~5.6! can be calculated by using experimental info
mation on single- and double-pion photoproduction which
available at energies belownmax. In the present context we
use the latest version of the single-pion photoproduction a
plitudes provided by the partial wave analysis of the V
group @41# ~the codeSAID, solution SP97K!. Also, double-
pion photoproduction is taken into account in the framewo
of a model which includes both resonance mechanisms
nonresonant production of thepD andrN states. Details of
this procedure are given in Ref.@19#.

The quantitiesAi
as(t) take into account contributions o

high energies into the dispersion relations. According
Regge phenomenology, only the amplitudesA1 and A2 can
have a nonvanishing part at high energies and thus ha
large asymptotic contribution. For the other amplitud
(A3,4,5,6), the dispersion integrals provide a very good es
mate of the corresponding non-Born parts. Thus, we can
liably find through Eq.~5.6! the constantsa3,4,5,6 and a3,t ,
a6,t , a3,n , a6,n . Moreover, the constanta1,n can be found as
well, since it is not affected by the asymptotic contributio
s
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Uncertainties appear only for the constantsa1, a2, anda1,t ,
which get a sizable contribution from the asymptotic part
the amplitude.

Following the arguments of Ref.@19#, we relate the
asymptotic contributionsA1,2

as (t) to thet-channel exchange o
the s andp0 mesons, respectively. The couplings of thep0

are well known, and we include this contribution by virtue
Eq. ~4.47!, in which we use experimental values for co
plings and introduce a monopole form factor withLp

5700 MeV. The experimental magnitude of the produ
gpNNFp0gg520.33 GeV21 is .3% higher than that given
by the anomaly equation~5.3!. However, the form factor
reduces thep0 strength by (mp /Lp)2.4% and makes the
resulting contribution att50 very close to that given by th
anomaly~see Table I!. Nevertheless, beyond thep0, the am-
plitude A2 can have contributions from other heavier e
changes and thus have an additional piece that weakly
pends ont.3 Therefore the fixed-t dispersion relation for
A2(n,t) should not be considered as a reliable source
information ona2.

The amplitudeA1(n,t) gets a large asymptotic contribu
tion from s exchange, which contributes to the constanta1
and therefore to the difference of the dipole polarizabilit
aE2bM . Since this difference is experimentally known f
the proton to beaE2bM5(1062)31024 fm3 @3#, as deter-
mined by low-energy Compton scattering data, the cons
a1 is known too. However, the quantitya1,t is not fixed by
these data and cannot be unambiguously predicted from
dispersion relations~5.6!. Using data ongp scattering at
higher energies~above 400 MeV!, the t dependence of the
asymptotic contributionA1

as(t) at 2t;0.5 GeV2 was esti-
mated in@19#. It corresponds to a monopole form factor wi
the cutoff parameterMs.600 MeV ~‘‘mass’’ of the s).
However, thet dependence ofA1

as(t) at smallert might be
somewhat steeper as suggested from independent estim
Therefore, the fixed-t dispersion relation forA1(n,t) should
not be considered as a reliable source of information ona1,t .

With these precautions, we put into Table I the results
saturating the dispersion integrals by known photoproduc
amplitudes and by the asymptotic contributions discus
above. We assume thatA1

as is the same for the proton an
neutron. Depending on which photoproduction input is us
the integrals are slightly different. We give both our resu
which use theSAID solution SP97K as an input and a mod
for double-pion photoproduction, and the results by Drech
et al. @42#, which use photoproduction amplitudes by Ha
steinet al. ~HDT! @43# ~and ignore the double-pion channe!.
The main difference between these two evaluations co

3A recent analysis@26# of unpolarized Compton scattering da
suggests the existence of such an additional contribution, since
spin polarizabilitygp found there deviates considerably from th
predicted by the dispersion integral~5.6! for the amplitudeA2 and
by thep0 asymptotic contribution~see Table I!. Even after allowing
for an uncertainty of;62 in the integral contribution given in
Table I, as suggested by a sizable integrand at energies abo
GeV where calculations of ImAi are very model dependent, such
strong deviation is difficult to understand theoretically and need
be confirmed by additional experimental measurements.
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from near-threshold energies where theSAID and HDT mul-
tipoles E01 are rather different~see Ref.@42# for details!.
For some other~generally similar! dispersion estimates, se
Refs.@22,47,48#. Available experimental data are also give
in the footnotes to Table I, including measurements ofaE
andbM for the proton~see Ref.@3#, and references therein!,
measurements ofaE for the neutron@44,45# ~see also@46#
for critical discussion!, and a recent estimate ofgp for the
proton@26#. It is apparent from Table I that it is necessary
measure the spin polarizabilities to an accuracy;131024

fm4 in order to obtain constraints valuable for the theory.
Similarly to Ref. @42#, we can isolate quantities that ca

be reliably predicted by the dispersion relations~5.6! ~up to
small uncertainties coming from the photoproduction amp
tudes!, namely those that do not depend ona1, a2, anda1,t
~see Table II!. In the absence of precise data on doub
polarized Compton scattering at low energies, these pre
tions can be used to diminish the number of unknown
rameters during fits and to help in determination
unconstrained combinations. These latter combinations
aE2bM ~which has already been measured!, gp , andaE2
2bM2. Therefore, the most interesting and informative e
periments on Compton scattering are those that are sens
to the parametersgp andaE22bM2, which mainly contrib-
ute to the backward scattering amplitude. Below we disc
which observables are the best suitable to this aim. T
above remarks apply principally to the proton. The case
the neutron can considered in a similar manner. Howe
since a free neutron target is not available, neutron pola
abilities are studied through elastic or inelasticnuclear
Compton scattering, thereby introducing additional unc
tainites due to Fermi motion, meson exchange curre
final-state interactions, etc.~see, e.g., Refs.@49,50#!.

B. Convergence of the low-energy expansion

In order to investigate the convergence of the low-ene
expansion, we use the same fixed-t dispersion relations de

he

e 1

to

TABLE II. Combinations of polarizabilities of the nucleo
which do not depend on the asymptotic contributionsA1,2

as (t). No-
tation is the same as in Table I.

CHPT ~LO! D pole DR ~SAID!

proton neutron

aE1bM
a 13.6 12.0 13.8 15.1

(1024 fm3)

aEn1bMn 5.7 5.3 5.3 6.8
aE21bM2 11.8 0.2 5.1 3.7
aEn1

1
4 aE2 7.4 0.05 3.1 4.4

bMn1
1
4 bM2 1.2 5.3 3.5 3.4

(1024 fm5)

gE11gM1 26.7 4.0 20.7 21.8
gE21gM2 2.2 0.75 2.2 2.2
gE11gE2 24.4 0.75 21.5 22.6
gM11gM2 0 4.0 3.0 3.0
(1024 fm4)

aExperimental value for the proton isaE1bM515.262.6 @3#. A
recent evaluation of this quantity in terms of the Baldin sum r
yields 13.6960.14 ~stat! for the proton and 14.4060.66 ~stat! for
the neutron@48#.
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FIG. 2. Calculated cross sections and asymmetries for the proton. A comparison is given between a full dispersion calcula~full
curves! and the low-energy expansion~dashed curves! in which the amplitudes are expanded toO(v2v82). The upper panels are th
unpolarized cross section at 0°~left! and 180°~right!. The lower two panels are the unpolarized cross section~left! andS3 ~right! at 90°.

FIG. 3. Calculated asymmetries for the proton. A comparison between a full dispersion calculation~full curves! and the low-energy
expansion~dashed curves! in which the amplitudes are expanded toO(v2v82). The upper panels areS2x ~left! andS2z ~right! at 90°. The
lower two panels areS2z at 180° ~left! and 0° ~right!.
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FIG. 4. Calculated cross sections and asymmetries for the neutron. A comparison is given between a full dispersion calcula~full
curves! and the low-energy expansion~dashed curves! in which the amplitudes are expanded toO(v2v82). The upper panels are th
unpolarized cross section at 0°~left! and 180°~right!. The lower two panels are the unpolarized cross section~left! andS3 ~right! at 90°.
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scribed in the preceding section to make an exact predic
for the invariant amplitudes at any energy. From these
Wi j can be calculated exactly and predictions for the vari
observables can be made. These can be compared with
dictions calculated by truncating theAi to O(v2v82), as
described in Sec. IV. Such a comparison is shown in Fig
and 3 for the proton and Figs. 4 and 5 for the neutron.
the proton, the expansion works very well for energies up
the pion threshold. For the neutron, it appears to work
well due to the fact that the Born contributions are consid
ably smaller than for the proton. The full calculation devia
rapidly from the expansion once the pion threshold
crossed.

C. Sensitivity of observables to polarizabilities

We now address the question of the measurement o
polarizabilities we have defined, with the principal focus b
ing on the spin polarizabilities. To the order of our expa
sion, the double polarization observables are not sensitiv
the quadrupole and dispersion polarizabilities, whereas
unpolarized cross section andS3 are sensitive to all of the
polarizabilities. Therefore it seems reasonable to use do
polarization measurements to constrain theg i , then unpolar-
ized measurements to measure the remaining polarizabil
At extreme forward and backward angles, the observableS2z
is sensitive to theg i in the combinations that giveg @Eq.
~4.24!# and gp @Eq. ~4.28!#, respectively. Two other linea
combinations can be obtained from measurements ofS2x
andS2z at 90°. Indeed, the formulas given at the end of S
n
e
s
re-

2
r
o
s

r-
s
s

he
-
-
to
e

le

s.

.

IV suggest that these measurements are primarily sensitiv
gM1 and gE1, respectively, at least to the lowest order.
Figs. 6 and 7 we show these observables as a functio
energy, as calculated using our low-energy expansion w
polarizabilities fixed by theSAID dispersion relation values
given in Table I. In order to evaluate the sensitivity of th
observable to the polarizability, we have adjusted vario
quantities by 431024 fm4 relative to the value in Table I
This amount is comparable to the pion loop contribution
each of the polarizabilities but is somewhat larger than
typical discrepancy among the competing theories.

We conclude that in the energy regime below pion thre
old where the low-energy expansion is valid, it will be ve
difficult to measure the spin polarizabilities to an accura
that can discriminate among the theories, at least at the
treme forward and backward angles. In particular, the ba
ward spin asymmetryS2z is almost completely insensitive t
theoretically motivated changes togp , whereas the forward
spin asymmetry is only moderately sensitive to changes ing.
Somewhat more sensitive are the asymmetries at 90°, w
might provide some useful constraints ongE1 andgM1. Most
promising isS2x for the neutron, which is remarkably sens
tive to changes ingM1.

At higher energy, the spin asymmetries are more sensi
to the spin polarizabilities, but of course the low-energy e
pansion is no longer valid. Dispersion theory provides a c
venient formalism for interpreting Compton scattering da
beyond the low-energy approximation, but only for tho
polarizabilties not already constrained by the same disp
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FIG. 5. Calculated asymmetries for the neutron. A comparison between a full dispersion calculation~full curves! and the low-energy
expansion~dashed curves! in which the amplitudes are expanded toO(v2v82). The upper panels areS2x ~left! andS2z ~right! at 90°. The
lower two panels areS2z at 180° ~left! and 0° ~right!.

FIG. 6. Plots for the proton indicating the sensitivity of the double polarization observables to the spin polarizabilities as a fun
energy. The solid curves use theSAID dispersion values for all of the spin polarizabilities~Table I!. The upper panels showS2x ~left! andS2z

~right! at 90°. The long and short dashed curves increase by 431024 fm4 the values ofgE1 andgM1, respectively. The lower panels sho
S2z at 180° ~left! and 0° ~right!. The dashed curves decrease by 431024 fm4 the values ofg ~right! or gp ~left!.
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FIG. 7. Plots for the neutron indicating the sensitivity of the double polarization observables to the spin polarizabilities as a fun
energy. The solid curves use theSAID dispersion values for all of the spin polarizabilities~Table I!. The upper panels showS2x ~left! andS2z

~right! at 90°. The long and short dashed curves increase by 431024 fm4 the values ofgE1 andgM1, respectively. The lower panels sho
S2z at 180° ~left! and 0° ~right!. The dashed curves decrease by 431024 fm4 the values ofg ~right! or gp ~left!.
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sion relations. As discussed above,gp andaE22bM2 are not
well constrained by the dispersion relations due to pot
tially unknown asymptotic contributions toa2 and a1,t , re-
spectively. We therefore investigate whether Compton s
tering in the so-called dip region between theD(1232) and
higher resonances might usefully constrain these two par
eters. In Figs. 8 and 9 we present calculations of the un
larized cross section and the spin observablesS3, S2x , and
S2z in the energy range 200–500 MeV. In these calculatio
the parametera1,t was adjusted by changing thes mass in
the asymptotic contributionA1

as(t)5A1
as(0)/(12t/Ms

2),
where A1

as(0) was already fixed by experimental data
aE2bM. The parametera2 was adjusted by adding to th
asymptotic contribution from thep0 exchange a contribution
of heavier exchanges, i.e., by using in the dispersion r

tions the ansatzA2
as(t)5„A2

p0
(t)1C…F(t), whereC was an

adjusted constant andF(t) was a monopole form factor with
the cutoff parameterLp'700 MeV. In the unpolarized
cross section for the proton, a change ofgp from 237 to
241 is indistinguishable from a change in thes mass from
500 to 700 MeV~which changesaE22bM2 from 49 to 38!.
However, these possibilities are easily distinguished w
S2z , so that a combination of unpolarized and polariz
measurements in this energy range offers the possibility
placing strong constraints on bothgp and aE22bM2. Of
course, any practical determination of the polarizabilit
from Compton scattering data, especially at energies ab
theD peak, has to take into account uncertainties in the p
topion multipoles used to evaluate the dispersion integr
-

t-

-
o-

s,

a-

h
d
of

s
ve
o-
s.

At the moment, these uncertainties are not negligible.4

VI. SUMMARY

The general structure of the Compton scattering am
tude from the nucleon with polarized photons and/or pol
ized nucleons in the initial and/or final state has been de
oped. A low-energy expansion of the amplitude toO(v4)
has been given in terms of ten polarizabilities: two dipo
polarizabilitiesaE andbM , two dispersion corrections to th
dipole polarizabilitiesaEn andbMn , two quadrupole polar-
izabilities aE2 and bM2, and four spin polarizabilitiesgE1,
gM1, gE2, andgM2. The physical significance of the param
eters has been discussed, and the relationship between
and the cross section and spin observables below the
threshold has been established. We have also presented
oretical predictions of these parameters based both on fi
t dispersion relations and chiral perturbation theory. We h
established that the range of validity of our expansion
tends to the pion threshold. We have shown that low-ene
experiments will have to be very precise to resolve the t
oretical ambiguities in the polarizabilities. However, we ha
suggested that measurements at higher energy might he
the most theoretically uncertain of them, particulary t

4For example, see Refs.@8,26# for arguments against the late
solution SP97K of Ref.@41# regarding the strength of theM11

multipole and Refs.@42,43# for possible problems with theE01

multipole.
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FIG. 8. Plots for the proton indicating the sensitivity ofS2x ~bottom left!, S2z ~bottom right!, S3 ~top right!, and the unpolarized cros
section~top left! to changes in the the backward spin polarizabilitygp and the parametera1,t at uLab5135° as a function of energy. The soli
curve usesa1,t corresponding toMs5500 MeV andgp523731024 fm4; the long dashes correspond to 500 MeV and241; and the short
dashes correspond to 700 MeV and237.

FIG. 9. Plots for the neutron indicating the sensitivity ofS2x ~bottom left!, S2z ~bottom right!, S3 ~top right!, and the unpolarized cros
section~top left! to changes in the the backward spin polarizabilitygp and the parametera1,t at u lab5135° as a function of energy. The soli
curve usesa1,t corresponding toMs5500 MeV andgp55831024 fm4; the long dashes correspond to 500 MeV and 62; and the s
dashes correspond to 700 MeV and 58.
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backward spin polarizabilitiygp and the difference of quad
rupole polarizabilitiesaE22bM2.
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APPENDIX A: MULTIPOLE CONTENT
OF POLARIZABILITIES

1. Center-of-mass amplitudes

In the c.m. frame, the amplitudeTf i of nucleon Compton
scattering can be represented by six functionsRi of the en-
ergy v and the c.m. angleu* as @51,53#

Tf i58pW(
i 51

6

r iRi~v,u* !, ~A1!

whereW5As and the spin basisr i reads

r15e8* •e , r25s8* •s , r35 i s•e8* 3e ,

r45 i s•s8* 3s ,

r55 i ~s• k̂ s8* •e 2s• k̂8 e8* •s !,

r65 i ~s• k̂8 s8* •e 2s• k̂ e8* •s !. ~A2!

In the particular cases of forward or backward scattering
t

n

1

8pW
@Tf i #u505r1~R11R2!1r3~R31R412R512R6!,

1

8pW
@Tf i #u5p5r1~R12R2!1r3~R32R422R512R6!.

~A3!

Some authors@28,23,13,36# utilize a different spin basis, and
the following identities provide links with the notation o
those works:

e8* • k̂ e• k̂8 5xr12r2 , i s• k̂83 k̂ e8* •e 5xr31r42r5 ,

i ~s•e8* 3 k̂ e• k̂8 2s•e3 k̂8 e8* • k̂ !52xr32r5 ,
~A4!

i ~s•s e8* • k̂ 2s•s8 e• k̂8 !52r32r6 ,

wherex5 k̂8• k̂ and where we have usede• k̂5e8* • k̂850.5

In particular, the amplitudesAi from @36# ~we denote them
here byAi

H) read

A1
H5c~R11xR2!, A2

H52cR2 ,

A3
H5c~R31xR412xR512R6!,

A4
H5cR4 , A5

H52c~R41R5!, A6
H52cR6 , ~A5!

wherec54pW/m.
The c.m. amplitudesRi are related to the invariant ampl

tudes~2.7! by
R15CH c1S 2A12
W2

m2
A3D 2

n

m
c2A52

W

m
c3A6J ,

R25CH c1S A12
W2

m2
A3D 1

n

m
c2A52

W

m
c3A6J ,

R35CH ~W2m!2S ~x21!A11~11x!
W2

m2
A3D 2

n

m
c3A52

W

m
c2A6J ,

~A6!

R45CH ~W2m!2S ~12x!A11~11x!
W2

m2
A3D 1

n

m
c3A52

W

m
c2A6J ,

R55CH ~W2m!2S 2A12
W2

m2
A3D 1~W22m2!S A21

W3

m3
A4D 12~W2m!S 2nA51

W2

m
A6D J ,

R65CH ~W2m!2S A12
W2

m2
A3D 1~W22m2!S 2A21

W3

m3
A4D 12~W2m!S nA51

W2

m
A6D J .

5A few other relations can be obtained from Eq.~A4! by doing a dual transformation,e→s5 k̂3e, s→2e5 k̂3s ~and the same for primed
vectors! which is just ap/2 rotation of the polarizations. Under such a transformation,r1↔r2, r3↔r4, andr5↔r6.
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Herex5cosu* and

C5
~s2m2!2

64ps2
, c154mW1~W2m!2~12x!,

c254W~W2m!2~W2m!2~12x!,

c354W22~W2m!2~12x!. ~A7!

Note also that the invariantsn, t, h are

n5
s2m21t/2

2m
, t5

~s2m2!2

2s
~x21!,

h5
~s2m2!2

2m2
~x11!. ~A8!
u
r

si

en
In the important case of low energies~or very heavy
nucleon!, one has

R152c~A31A61A1!, R252c~A31A62A1!,

R352c8~A61A5!, R452c8~A62A5!, ~A9!

2R55c8~A41A61A2!, 2R65c8~A41A62A2!

up to higher orders inv/m. Here c5v2/4p and c8
5v3/4pm.

A multipole expansion of the amplitudesRi has the form
@52–54#
R15(
l>1

$@~ l 11! f EE
l 1 1 l f EE

l 2 #~ lPl81Pl 219 !2@~ l 11! f MM
l 1 1 l f MM

l 2 #Pl9%,

R25(
l>1

$@~ l 11! f MM
l 1 1 l f MM

l 2 #~ lPl81Pl 219 !2@~ l 11! f EE
l 1 1 l f EE

l 2 #Pl9%,

R35(
l>1

$@ f EE
l 1 2 f EE

l 2 #~Pl 219 2 l 2Pl8!2@ f MM
l 1 2 f MM

l 2 #Pl912 f EM
l 1 Pl 119 22 f ME

l 1 Pl9%,

~A10!

R45(
l>1

$@ f MM
l 1 2 f MM

l 2 #~Pl 219 2 l 2Pl8!2@ f EE
l 1 2 f EE

l 2 #Pl912 f ME
l 1 Pl 119 22 f EM

l 1 Pl9%,

R55(
l>1

$@ f EE
l 1 2 f EE

l 2 #~ lPl91Pl 21- !2@ f MM
l 1 2 f MM

l 2 #Pl-1 f EM
l 1 @~3l 11!Pl912Pl 21- #22 f ME

l 1 @~ l 11!Pl 119 12Pl-#%,

R65(
l>1

$@ f MM
l 1 2 f MM

l 2 #~ lPl91Pl 21- !2@ f EE
l 1 2 f EE

l 2 #Pl-1 f ME
l 1 @~3l 11!Pl912Pl 21- #22 f EM

l 1 @~ l 11!Pl 119 12Pl-#%.
s
he
HerePl5Pl(x) are Legendre polynomials ofx5cosu* . The
multipole amplitudesf TT8

l 6 with T,T85E,M correspond to
transitionsTl→T8l 8 and the superscript indicates the ang
lar momentuml of the initial photon and the total angula
momentumj 5 l 6 1

2 . Due toT invariance,

f EM
l 1 5 f ME

~ l 11!2 , f ME
l 1 5 f EM

~ l 11!2 . ~A11!

Keeping only dipole-dipole and dipole-quadrupole tran
tions in these formulas, we obtain

R152 f EE
111 f EE

12 , R252 f MM
11 1 f MM

12 ,

R35 f EE
122 f EE

1116 f EM
11 , R45 f MM

12 2 f MM
11 16 f ME

11 ,
~A12!

R5526 f ME
11 , R6526 f EM

11

~plus higher multipoles, which introduce an angular dep
dence to the amplitudesRi).
-

-

-

2. Polarizabilities to order O„v3
…

Low-energy expansions of the amplitudesRi are obtained
from Eqs.~A6! and ~4.6! @22#. Leading nonvanishing term
of Ri are given by the Born term, in accordance with t
low-energy theorem by Gell-Mann–Goldberger–Low:

R1
B5r 0q2S 211~11x!

v

mD1O~v2!,

R2
B52r 0q2

v

m
1O~v2!,

R3
B52r 0q2

v

2m
1O~v2!,

R4
B52r 0~k1q!2

v

2m
1O~v2!, ~A13!
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R5
B5O~v2!, R6

B5r 0q~k1q!
v

2m
1O~v2!,

where r 05e2/4pm and eq is the electric charge of the
nucleon. Structure-dependent~i.e., non-Born! contributions
to Ri start with the terms

R1
NB5v2aE1O~v3!, R2

NB5v2bM1O~v3!,

R3
NB5v3~g112g3!1O~v4!, R4

NB5v3g21O~v4!,
~A14!

R5
NB52v3~g21g4!1O~v4!, R6

NB52v3g31O~v4!,

where coefficients are directly read out from Eq.~A9!:

aE52
1

4p
~a31a61a1!, bM52

1

4p
~a31a62a1!,

g15
1

4pm
~a42a52a2!, g25

1

4pm
~a52a6!,

~A15!

g35
1

8pm
~a22a42a6!, g45

1

8pm
~a62a22a422a5!.

Here the constantsg i are those that appeared in Eq.~4.19!.
The physical meaning of these polarizabilities can be

derstood by using the multipole expansion~A12!. Compar-
ing with Eq.~4.10!, we identify the polarizabilities as leadin
terms in the structure-dependent multipoles:

v2aE.~2 f EE
111 f EE

12!NB,

v2bM.~2 f MM
11 1 f MM

12 !NB,

v3g1.~ f EE
122 f EE

1126 f EM
11 !NB,

~A16!

v3g2.~ f MM
12 2 f MM

11 16 f ME
11 !NB,

v3g3.~6 f EM
11 !NB,

v3g4.~ f MM
11 2 f MM

12 !NB.

It is seen that some of theseg i describe mixed effects o
spin-dependent dipole scattering and dipole-quadrupole t
sitions. A more transparent physical meaning can be ascr
to the quantities

gE152g12g35
1

8pm
~a62a412a51a2!

.v23~ f EE
112 f EE

12!NB,

gM15g45
1

8pm
~a62a422a52a2!.v23~ f MM

11 2 f MM
12 !NB,

~A17!
-

n-
ed

which describe a spin dependence of the dipole transiti
E1→E1 andM1→M1, and to the quantities

gE25g21g452
1

8pm
~a41a61a2!.6v23~ f ME

11 !NB,

gM25g352
1

8pm
~a41a62a2!.6v23~ f EM

11 !NB,

~A18!

which describe transitions to quadrupole states,M1→E2
and E1→M2. In terms of these quantitities, the structur
dependent parts of the amplitudesR3 to R6 read

R3
NB5v3~2gE11gM2!1O~v4!,

R4
NB5v3~2gM11gE2!1O~v4!,

~A19!

R5
NB52v3gE21O~v4!,

R6
NB52v3gM21O~v4!.

The quantitiesgE1, gM1, gE2, andgM2 are related to the spin
polarizabilitiesd, k, d1 andk1 of Levchuk and Moroz@22#
~they call them gyrations! by

d52gE11gM2 , k52gM11gE2 ,

d152gE2 , k152gM2 , ~A20!

to the spin polarizabilitiesg i of Ragusa@23# by

g152gE12gM2 , g252gM11gE2 ,

g35gM2 , g45gM1 , ~A21!

to the spin polarizabilitiesa1, b1, a2, b2 of Babusciet al.
@24# by

a154gM2 , b1524gE2 , a2522gE122gM2 ,

b252gM112gE2 , ~A22!

and to the forward- and backward-angle spin polarizabilit
by

g52gE12gM12gE22gM2 ,

gp52gE11gM11gE22gM2 . ~A23!

The parameterd in @24# is d52gp .

3. Quadrupole and dispersion polarizabilities

Effects described by the constantsan , a t , bn , and b t
correspond to the following contributions of orderO(v4) to
the spin-independent amplitudesR1 andR2:

dR1
~4!5v4@an1~2x22!a t#, dR2

~4!5v4@bn1~2x22!b t#
~A24!

@these are not all terms of orderO(v4) in R1,2, as is dis-
cussed in Appendix C#. The constants in Eq.~A24! are re-
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lated to O(v4) terms in dipole-dipole and quadrupole
quadrupole transitions. Introducing weighted sums o
projections of the total angular momentumj ,

f El5~ l 11! f EE
l 1 1 l f EE

l 2 , f Ml5~ l 11! f MM
l 1 1 l f MM

l 2 ,
~A25!

we have

R15 f E112x fE22 f M2 , R25 f M112x fM22 f E2 .
~A26!

Comparing with Eq.~A24!, we conclude that the constan
a t andb t are proportional to the electric and magnetic qua
rupole polarizabilities of the nucleon@25#,

aE2512a t.12v24~ f E2!NB,

bE2512b t.12v24~ f M2!NB. ~A27!

The normalization coefficient here is explained in Appen
B. It is chosen to conform to the definitions used in atom
physics where, for example, dynamic electric polarizabilit
of the hydrogen read@25,55#

4paEl~v!5e2(
nÞ0

S 1

En2E02v

1
1

En2E01v D u@r l Pl~cosu!#n0u2.

~A28!

The factor 4p arises because we use units in whiche2

.4p/137.
The combinations

aEn5an22a t1b t ,

bMn5bn22b t1a t ~A29!

are identified asO(v4) terms in the dipole amplitudesf E1
and f M1; that is, dispersion effects in the dynamic dipo
polarizabilities

aE1~v!5aE1v2aEn1•••,

bM1~v!5bM1v2bMn1•••. ~A30!

For the hydrogen atom,

4paE52(
nÞ0

u~Dz!n0u2

En2E0
, 4paEn52(

nÞ0

u~Dz!n0u2

~En2E0!3
,

D5er. ~A31!

APPENDIX B: NORMALIZATION
OF THE POLARIZABILITIES

In this appendix we explain the normalizations of the p
larizabilities and effective interactions, which are defined
Sec. IV, by using a simple nonrelativistic model. We discu
the quadrupole polarizabilityaE2 and the spin polarizabil-
ities gE2 andgM1.
r

-

x
c
s

-

s

1. Quadrupole polarizability aE2

Let us consider a charged particle in the bounds-wave
stateu0& affected by an external electric potentialA0(r). Ex-
panding the interactioneA0(r) in powers ofr, we get the
quadrupole interaction with the external field,

V5
1

2
eri r j¹ i¹ jA0~0!52

1

6
Qi j Ei j . ~B1!

HereQi j 5e(3r i r j2r 2d i j ) is the quadrupole moment of th
system and

Ei j 52¹ i¹ jA05
1

2
~¹ iEj1¹ jEi !, Ei

i50, ~B2!

is the quadrupole strength of the field. The energy shift of
particle caused by the quadrupole interaction~B1! is given
by second-order perturbation theory,

DE52
1

36(nÞ0

~Qi j Ei j !0n~QpqEpq!n0

En2E0
52

1

36
XEi j Ei j .

~B3!

Here n numerates excited statesun& and their energiesEn .
The quantityX is defined as a coefficient in the expressio

(
nÞ0

1

En2E0
@~Qi j !0n~Qpq!n01H.c.#

5XS d ipd jq1d iqd jp2
2

3
d i j dpqD . ~B4!

The right-hand side~RHS! of Eq. ~B4! is the most genera
tensorTi jpq which has vanishing tracesTi .pq

i 5Ti jp .
p50 and

is symmetric underi↔ j , p↔q, or i j↔pq.
Taking i , j ,p,q5z, we relateX to the quadrupole polar

izability aE2:

X512paE2 , 4paE2[
1

2(
nÞ0

u~Qzz!n0u2

En2E0
. ~B5!

Finally, the energy shift~B3! takes the form of an effective
quadrupole potential

Heff
E2 nospin52

1

12
4paE2Ei j Ei j . ~B6!

2. Quadrupole spin polarizability gE2

Now let us consider a particle moving around a hea
nucleus. We assume that both the particle and the nuc
have spin and that the total spin of the system in the gro
stateu0& is 1/2. In the presence of both an electric quad
pole and magnetic dipole interaction,

V52
1

6
Qi j Ei j 2MiHi , ~B7!

whereMi is the magnetic moment operator, the correspo
ing energy shift of the system,(nÞ0V0nVn0 /(E02En), has a
mixed E2-M1 term,
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DE52
1

6(
nÞ0

1

En2E0
@~Qi j Ei j !0n~MkHk!n01H.c.#

52
1

6
YEi j ~s iH j1s jHi !. ~B8!

HereY is defined as

(
nÞ0

1

En2E0
@~Qi j !0n~Mk!n01H.c.#

5YS s id jk1s jd ik2
2

3
skd i j D . ~B9!

The RHS of Eq.~B9! is the most general tensorTi jk which
has vanishing traceTi .k

i 50 and is symmetric underi↔ j .
Taking i , j ,k5z, we relateY to the quadrupole spin po

larizability gE2:

Y5212pgE2 ,

4pgE2sz[2
1

4(
nÞ0

1

En2E0
@~Qzz!0n~Mz!n01H.c.#,

~B10!

where the last equation explicitly shows the normalizat
and physical meaning ofgE2. Such a polarizability can exis
if there are tensor forces inside the system. Finally, the
ergy shift ~B3! takes the form of an effective potential

Heff
E2,spin5

1

2
4pgE2Ei j ~s iH j1s jHi !54pgE2Ei j s iH j .

~B11!

3. Dipole spin polarizability gM1

Now, let us assume that the above spin-1/2 system s
ters a photon through a magnetic dipole interaction2M
•H(t). The corresponding Compton scattering amplitu
through excited intermediate states reads

1

2m
Tf i

M15v2sj8* si (
nÞ0

S ~M j !0n~Mi !n0

En2E02v
1

~Mi !0n~M j !n0

En2E01v D .

~B12!

Its spin dependent part at low energies is

1

8pm
Tf i

M1,spin52 igM1v3s•s8* 3s , ~B13!

where the parametergM1 is defined as a coefficient in th
equation

(
nÞ0

1

~En2E0!2
@~M j !0n~Mi !n02H.c.#54pgM1i e i jksk .

~B14!

The scattering amplitude~B13! can be associated with a
effective spin-dependent interaction

Heff
M1,spin52

1

2
4pgM1s•H3Ḣ. ~B15!
n

n-

at-

e

4. Compton scattering amplitude

Now we give a summary of interactions and scatter
amplitudes based on the above normalizations. Note tha
corresponding electric and magnetic effective interactio
are related through the duality transformation,Ei→Hi , Hi
→2Ei .

With the effective quadrupole interaction

Heff
~E2,M2!,no spin52

1

12
4p~aE2Ei j Ei j 1bM2Hi j Hi j !,

~B16!

whereHi j 5
1
2 (¹ iH j1¹ jHi) andHi

i50, the Compton scat-
tering amplitude reads

1

8pm
Tf i

~E2,M2!,no spin5
1

12
v4aE2~2zr12r2!

1
1

12
v4bE2~2zr22r1!,

~B17!

wherer i are given in Eq.~A2!. The spin-dependent dipole
quadrupole interaction

Heff
~E2,M2!,spin54p~gE2Ei j s iH j2gM2Hi j s iEj ! ~B18!

results in the Compton scattering amplitude

1

8pm
Tf i

~E2,M2!,spin5v3gE2~r42r5!1v3gM2~r32r6!.

~B19!

The spin-dependent dipole interaction

Heff
~E1,M1!,spin52

1

2
4pe i jksk~gE1EiĖj1gM1HiḢ j !

~B20!

gives the Compton scattering amplitude

1

8pm
Tf i

~E1,M1!,spin52v3~gE1r31gM1r4!. ~B21!

APPENDIX C: QUADRUPOLE POLARIZABILITIES
AND RELATIVISTIC CORRECTIONS

TO THE DIPOLE INTERACTION

The polarizabilities of the nucleon can only be given
exact meaning through definition. The simplest definition
the multipole polarizabilitiesaEl andbMl is that they are the
appropriately normalized coefficients of thev2l terms in the
partial-wave amplitudes of Compton scattering, (f El)

NB and
( f Ml)

NB @25,56#. However, we do not follow this approac
for the quadrupole polarizabilities because it leads to so
unwanted features when relativistic effects are taken into
count. ConsideringO(v4) terms in the amplitudes, we wan
to exclude contributions that arise merely as relativistic
coil corrections to the dipole polarizabilities.

We would like to associate with the polarizabilitiesaEl
andbMl those nucleon-structure effects in the amplitudeTf i
that are even functions of the photon energy or momen
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and do not depend on the nucleon spin. However, both
energy and the spin depend on the reference frame. If
frame is changed, the energy undergoes a Lorentz tran
mation and the Pauli spinors of the nucleon undergo
Wigner rotation. If the amplitudeTf i associated with the po
larizabilities aEl , bMl is chosen to be spin independent
the c.m. frame, it would be spin dependent in other fram
including the lab and Breit frames. Moreover, since the el
tric and magnetic fields are not invariant under Lorentz tra
formations, the splitting of structure effects into electric a
magnetic parts,;aEl and ;bMl , may also depend on th
frame. Giving a relativistically sound definition, we have
be cautious when choosing a frame and using corresp
dence with notions of classical physics.

The c.m. frame is not good in this respect. The c.m. a
plitudesRi do not possess all the symmetries that the am
tudeTf i itself has. The crossing transformation,

e,k↔e8* ,2k8, ~C1!

brings the total momentum of thegN system,k1p, out of
rest, so that the amplitudesRi are neither odd nor even func
tions of the energy. Therefore, an effective covariant int
action ~i.e., an effective Lagrangian!, which describes the
polarizabilities and possesses the symmetries of the total
plitude Tf i , would result in c.m. amplitudesRi that contain
terms of mixed order inv, both even and odd. It would b
difficult to rely on individual terms inRi when identifying
the polarizabilities, except for terms of lowest order.

The amplitudes in the lab frame are also not good,
cause of the lack of symmetry between the initial and fi
nucleon. In particular, the PT transformation,

e,k↔e8,k8, s,p↔2s,p8, ~C2!

applied to thegN system, brings the initial nucleon out o
rest. That is why Eq.~2.11! contains both even and od
powers of the photon energies.

The best choice is provided by the Breit frame, in whi
the nucleon before and after photon scattering has the
mentum

pB5
1

2
~k82k!B5QB , pB852QB , ~C3!

respectively. In such a frame, bothT invariance and crossing
symmetry are fulfilled in the simplest way and, important
the nucleon is at rest on average, (p1p8)B50. That is why,
in the course of an analysis of elasticeN scattering, the Breit
frame rather than the c.m. frame is used to relate the am
tude of the reactioneN→eN with physically meaningful
structure functions of the nucleon, the electromagnetic fo
factorsGE andGM . For some deeper motivation in favor o
the Breit frame and its relation with the language of wa
packets, see Ref.@57#.

Therefore in constructing our definitions, we choose
postulate that the polarizability interaction and the rela
Compton scattering amplitude are spin independent in
Breit frame. It will be spin dependent in the c.m. fram
e
he
or-
a

s,
-

s-

n-

-
i-

r-

m-

-
l

o-

,

li-

o
d
e

.

Since the nucleon spin in the lab or Breit frame is the sam6

the amplitude in the lab frame will be spin independent al
Nevertheless, we do not wish to directly relate individu
spin-independent terms in Eq.~2.11! of different orders in
vv8 with appropriate polarizabilities. That is partly becau
the amplitude~2.11! is not symmetric with respect to th
initial and final nucleon. The factorsvv8e8* •e and
vv8s8* •s in Eq. ~2.11! represent the electric and magne
fields taken in the rest frame of the initial nucleon, wherea
sound definition should use the fields in the frame in wh
the nucleon is at rest, at least on average. Some of
O(v2v82) terms in Eq.~2.11! are actually the result of a
Lorentz transformation ofO(v2) terms in the Breit frame.

For the above reasons, we choose as a definition of
Compton scattering amplitude related with the dipole pol
izabilities the expression

Tf i ,B
~aE ,bM !

[4pvB
2ū8u~eB8* •eBaE1sB8* •sBbM !, ~C4!

where both the energyvB and all polarizations are taken i
the Breit frame. NeitherO(v4) terms nor recoil corrections
;t/m2 are explicitly included here. The factorū8u
5A4m22t52mN(t) is spin independent in the Breit fram
and serves only for a covariant normalization.7 Note also that
vB5n/N(t). Since the spin-independent part of the Com
ton scattering amplitude in the Breit frame reads

Tf i ,B
no spin5ū8~p8!e8* mH 2

Pm8 Pn8

P82 S T11
m2nT2

m22t/4
D

2
NmNn

N2 S T31
m2nT4

m22t/4
D J enu

5
2mn2

N~ t ! H e8* •e F2A12S 12
t

4m2D A3

2
n2A5

m22t/4
2A6G

1s8* •s FA12S 12
t

4m2D A31
n2A5

m22t/4
2A6G J ,

~C5!

the invariant amplitudesAi corresponding to Eq.~C4! are

6That is because the Wigner angles for the nucleon-spin rota
between the lab and Breit frames vanish for both the initial and fi
nucleon. The Wigner angle,uW}V3v, depends on the velocityv of
the nucleon itself and the relative velocityV of the frames. In the
case of the transformation between the lab and Breit frames,uW

50 for the initial nucleonN, because it is at rest,v5p50. Also,
uW50 for the final nucleonN8, becauseV}p81p5p8 is parallel to
the nucleon velocityv}p8. The similar Wigner angles for photon
are generally not zero, so that the photon polarizations are diffe
in the lab and Breit frames.

7Cf. the definition of the electromagnetic form factors of th
nucleon@57#.
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A1
~aE ,bM !

522p~aE2bM !, A3
~aE ,bM !

52
2p~aE1bM !

12t/4m2
,

~C6!

and otherAi
(aE ,bM) are zero. Using Eq.~2.11!, we find the

corresponding scattering amplitude in the lab frame:

Tf i
~aE ,bM !

5
8pmvv8

N~ t ! H e8* •e aE1s8* •s bM

2
t

4m2
~e8* •e 2s8* •s !~aE2bM !J , ~C7!

where a recoil correction;t/m2 appears as a result of th
no-recoil ansatz in the Breit frame, Eq.~C4!.

With the above definition of the contribution of the dipo
polarizabilities, we write the remaining terms of the no
Born amplitudeTf i

NB,no spinas

Tf i
NB,no spin2Tf i

~aE ,bM !
58pmvv8$e8* •e ~n2an1ta t!

1s8* •s ~n2bn1tb t!%1O~v6!.

~C8!

They are given by the parametersan , a t , bn , andb t in Eq.
~4.13!, which determine quadrupole and dispersion pola
abilities, as discussed in Appendix A.

APPENDIX D: POLE CONTRIBUTION OF THE D„1232…
TO POLARIZABILITIES

To calculate the contribution of theD-isobar excitation
into the polarizabilities, we write an effectivegND interac-
tion in the form similar to Eq.~B7!:
an

ys

. D
-

-

Heff52M•H2
1

6
Qi j ¹ iEj . ~D1!

Here M and Qi j are the magnetic dipole and electric qua
rupole transition operators and are characterized by the
trix elements

^D,6 1
2 uMzuN,6 1

2 &5mND , ^D,6 1
2 uQzzuN,6 1

2 &56QND .
~D2!

Since the interaction~D1! involves M1 andE2 transitions
into the j 53/2 state, it contributes to the multipolesf MM

11 ,
f EE

22 , f ME
11 and therefore to the polarizabilitiesbM , gM1, aE2,

gE2.
Using these matrix elements and Eq.~B4! from Appendix

B, we find 4paE25QND
2 /(2D). From Eq. ~B9! we get

4pgE252mNDQND /(2D). Using the same matrix element
the Wigner-Eckart theorem, and Eq.~B14!, we find 4pgM1

5mND
2 /D2. Finally, the equations 4pbM52mND

2 /D and
4pbMn52mND

2 /D3 are magnetic analogs of Eq.~A31!.
In terms of the ratioR5E11 /M11 of the resonance mul

tipoles of pion photoproduction taken at the resonance
ergy (Eg, lab5340 MeV!,

QND

mND
5

12

k
R.20.25 fm, ~D3!

wherek is the photon energy of the decayD→gN in the rest
frame of theD and R.22.75% ~we take an average of
22.5% @58# and23.0% @8#!.
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@16# I. Guiaşu, C. Pomponiu, and E. E. Radescu, Ann. Phys.~N.Y.!

114, 296 ~1978!.
.

@17# D. M. Akhmedov and L. V. Filkov, Sov. J. Nucl. Phys.33,
1083 ~1981!.

@18# A. I. L’vov, Sov. J. Nucl. Phys.34, 597 ~1981!.
@19# A. I. L’vov, V. A. Petrunkin, and M. Schumcher, Phys. Rev.

55, 359 ~1997!.
@20# See for example, LSC Collaboration, D. Babusciet al., BNL-

61005, 1994; GRAAL Collaboration, J. P. Bocquetet al.,
Nucl. Phys.A622, 124c~1997!.

@21# K. Y. Lin, Nuovo Cimento A2, 695 ~1971!.
@22# M. I. Levchuk and L. G. Moroz, Proc. Acad. Sci. Belarus1, 49

~1985! @in Russian#.
@23# S. Ragusa, Phys. Rev. D47, 3757~1993!.
@24# D. Babusci, G. Giordano, and G. Matone, Phys. Rev. C55,

R1645~1997!.
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