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Abstract

Deuteron Compton scattering below pion photoproduction threshold is considered in the
framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete
gauge-invariant set of diagrams is taken into account which includes resonance diagrams without
and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are
analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is
found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative
description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic
polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data. 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Elastic photon, or Compton, scattering is a powerful tool for probing the structure of
hadrons and nuclei. A deformation of the system’s ground state caused by an incoming
electromagnetic wave and encoded into electromagnetic polarizabilities of the system
contributes to radiation of outgoing photons and thus shows itself in such observables as the
differential cross section of Compton scattering. A particular example is forward Compton
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scattering. The corresponding spin-averaged amplitude at sufficiently low energiesω has
the form:2

T (ω)= ε · ε′∗
(
−Z

2e2

Mt
+ 4π(ᾱ + β̄)ω2+ · · ·

)
. (1.1)

Hereε andε′ are polarizations of the initial and final photons,Ze andMt are the electric
charge and the mass of the target, andᾱ and β̄ are the electric and magnetic dipole
polarizabilities of the target. Many efforts have been spent to measure the polarizabilities
of the nucleon,̄αN andβ̄N (as well as polarizabilities of other hadrons and nuclei), and to
understand them theoretically. For a review and further references see [1–6].

The polarizabilities of the proton have been successfully found in a series of experiments
onγp scattering [7–13] which ultimately yielded quite an accurate result,

ᾱp= 12.1± 0.8± 0.5, β̄p= 2.1∓ 0.8∓ 0.5 (1.2)

(in the units of 10−4 fm3 used for the dipole polarizabilities throughout the paper). The
values (1.2) quoted here [12] have been extracted from data of a few experiments of
90’s performed at energies below pion photoproduction threshold under the theoretical
constraint of the Baldin sum rule [14,15]:

ᾱ + β̄ =
∞∫

0

σtot(ω)
dω

2π2ω2 , (1.3)

whereσtot(ω) is the total photoabsorption cross section. Recently, the result (1.2) has been
confirmed by a more comprehensive analysis of a larger data base [16].

Meantime, studies of polarizabilities of the neutron which began even earlier than those
for the proton (see book [17] which summarizes a long history of these studies) achieved
a knowledge ofᾱn and β̄n far less satisfactory. Most of the experiments performed for
measuring the polarizabilities of the neutron had deals with neutron transmission in the
substance. The long-range polarization interaction

Vpol(r)=−1
24π

[
ᾱE2(r)+ β̄H2(r)

]
(1.4)

of the neutrons with the electromagnetic (actually, electric) field near the edge of nuclei
in the substance creates a small but detectable contribution to the total cross section due
to its anomalous energy dependence∝ √E [17–19]. The best results for the electric
polarizability of the neutron,̄αn, obtained from these studies are:

ᾱn= 12.6± 1.5± 2.0 [20], ᾱn= 0.6± 5 [21] (1.5)

2 The factor of 4π in Eqs. (1.1) and (1.4) below stands because we use Heaviside’s units for the electric charges
and electromagnetic fields (e.g.,e2 = 4π/137) but, for historical reasons, Gaussian units for the polarizabilities
themselves.
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where a small relativistic correction= +0.62 [3] missing in a fully nonrelativistic
formalism used in the original works [18,20,21] is included.3 Since the two values
in Eq. (1.5) seem to contradict to each other, the current situation with knowing the
polarizability ᾱn is hardly satisfactory. Moreover, there is an argument [23] that the
systematic (in fact, theoretical) uncertainty, which is a very delicate problem for those
experiments, may be strongly underestimated in Ref. [20]. Furthermore, the neutron
transmission experiments do not constrain the magnetic polarizability of the neutron at all,
althoughβ̄n can be theoretically derived from̄αn by using the Baldin sum rule (1.3). For
all these reasons there is a need for searching for other ways of finding the polarizabilities
of the neutron, e.g., by using real photons.

There are several reasons why experimental studies of neutron Compton scattering and
a further extraction of the neutron polarizabilities are more difficult than those for the
proton. First, because of the absence of dense free-neutron targets, actual measurements
of γ n scattering are forced to have a deal with neutrons bound in nuclei and hence to
take into account effects of the nuclear environment. Second, due to vanishing the neutron
Thomson scattering amplitude (viz. the amplitude of photon scattering off the electric
charge of the neutron which is zero), the contribution of polarizabilities of the neutron to
the differential cross section at low energies (. 100 MeV) turns out to be rather small.
It is of orderO(ω4) in the low-energy expansion over the photon energyω vs. order
O(ω2) in the proton case. Third, theO(ω4) contribution of the neutron polarizabilities
is accompanied with other termsO(ω4) which come from the spin-dependent part of
the scattering amplitude; these additional terms are determined by the so-called spin
polarizabilities and they cannot be isolated in a model-independent way [24,25]. Therefore,
a use of further assumptions, like those constituting the dispersion theory of Compton
scattering [24,26–30], for evaluating the unknown pieces becomes unavoidable. All that
introduces larger theoretical uncertainties to the obtained polarizabilities which are at least
±2 even without the nuclear-environment corrections.

The first attempt to measure low-energyγ n scattering and to extract polarizabilities of
the neutron has been done by the Göttingen–Mainz group [31] which followed an earlier
theoretical suggestion [32] to exploit the reactionγ d→ γ np in the quasi-free kinematics.
The result of this very first experiment,

ᾱn= 10.7+3.3
−10.7, (1.6)

is not yet so accurate. However, with the use of a wider range of photon energies (up
to 200–250 MeV), further improvements are quite feasible [24,32,33]. A high accuracy
of the underlying dispersion calculations ofγ n scattering [24,29] is crucial for finding
the polarizabilities from Compton scattering data taken at “high” energies, viz. those

3 Recently, the relation between the polarizabilityᾱn standing in theγ n scattering amplitude and the so-called
static polarizabilityαn determined in the neutron transmission experiments was rederived in Ref. [22]. In essence,
the main conclusion of that analysis agrees with our own findings [3,19]. This agreement, however, might be
difficult to see from the paper [22], because its authors erroneously claim that there is a difference betweenᾱ,
which is understood as a parameter standing in an effective relativistic Hamiltonian, and the polarizabilityαs
(using their notation) determined through Compton scattering.
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above pion photoproduction threshold. Therefore, a determination ofᾱn and β̄n from
such data also assumes a careful check and normalization of pion photoproduction off
the neutron which is used in the dispersion calculations as a crucial input. Fortunately,
such a check can be done in parallel with Compton scattering measurements, because
the γ (n,π) reaction can be learned fromγ (d,π) in the quasi free kinematics as
well [34].

In the present work we analyze another possibility for probing the polarizabilities of
the neutron which requires no strong assumptions on the “high-energy” behavior ofγN
interactions. This possibility mentioned already in Ref. [14] is elasticγ d scattering below
pion photoproduction threshold. The presence of the proton next to the neutron and
the coherence of the proton and neutron contributions makes two advantages. First, the
O(ω2) contribution of the neutron polarizabilities to the scattering amplitude can interfere
with theO(1) contribution from proton Thomson scattering, so that a sensitivity of the
differential cross section with respect to the polarizabilities is enhanced. Second, the
largest contribution to the spin polarizabilities of nucleons which comes from thet-chan-
nel π0-exchange does not contribute toγ d scattering at all (due to isospin), so that
O(ω4) corrections, which are not small for individual nucleons, especially for the neutron,
are more suppressed in the considered case. Nevertheless, various binding corrections,
including meson-exchange currents (MEC) and meson-exchange seagulls (MES), are
rather important and have to be introduced and carefully evaluated. Their analysis is the
central subject of the present paper.

Theoretical studies of deuteron Compton scattering have been started by Bethe and
Peierls [35,36] who considered this process in the dipole E1 approximation. After then
a number of calculations has been performed in 50’s and 60’s, mostly based on the
impulse approximation [37–41]. A higher level of art, with an explicit consideration of
MEC and of their influence on the so-called resonance and seagull amplitudes of Compton
scattering was introduced by Weyrauch and Arenhövel [42]. They directly calculated the
seagull contribution from the pion exchange and developed an approximate scheme based
on dispersion relations in the long wave-length limit to find the resonance amplitude of
Compton scattering from a theoretically known deuteron photodisintegration amplitude.
Later on, direct calculations of the resonance amplitude free from the approximations
of the oversimplified dispersion relations have been performed using a simple separable
NN potential [43]. More recently, this consideration was further improved [44] by using
realistic NN potentials for evaluation of NN rescattering in the intermediate state and
by taking into account leading relativistic corrections and MEC beyond the Siegert
approximation. A similar (but technically different) approach was presented by us in
Ref. [45], in which MEC and two-body seagull effects were evaluated using two methods:
through a procedure of the minimal substitution in the NN potential and through a
direct diagrammatic computation in the framework of the Bonn OBE picture of the NN
interactions.

It should be said that despite a resemblance of many physical ingredients of Refs.
[42–45], the results of these works are sometimes rather different, what may indicate
unnoticed computational errors or unjustified approximations. For instance, the differential
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cross section at the forward angle and the photon energyω = 100 MeV found in Ref. [44]
is only 2/3 of that found in Refs. [43,45] (in this comparison, polarizabilities of the nucleon
are omitted). There are large discrepancies at the backward angle either. Very recently, one
more calculation in the approach close to that of Ref. [44] was presented [46]. Their results
differ from our and previous predictions too, especially at energiesω ∼ 100 MeV. Possible
reasons for that are discussed in Section 6 below.

Recently methods of effective field theories have been applied to deuteron Compton
scattering as well [47–49]. In such an approach, a model-independent part of the low-
energy scattering amplitude which dominates in the chiral limit ofmπ → 0 (but stillm2

π �
M∆, where∆= 2.2246 MeV is the deuteron binding energy andM is the nucleon mass)
was found in a closed analytical form [47]. Generally, the results of both calculations
are similar to those obtained by virtue of the “standard-nuclear-theory” technique. The
advantage of the calculations [47–49] is that they naturally include important nonstatic
effects in the pion propagation which is an outside feature for the “standard” theory
based on the notion of the NN potential. A disadvantage also exists which is related with
unavoidable truncation of the expansion series leading to a lost of contributions important
for a determination of the neutron polarizabilities. The∆-isobar is one example. See
Section 6 for a further discussion.

In the present paper we complete the calculation with the nonrelativistic Bonn OBE
NN potential (OBEPR) started earlier [45]. Technically, this is done in the framework
of the diagrammatic approach which relies on an explicit consideration of relevant
Feynman diagrams of the reaction in the momentum representation. It avoids Siegert-
like transformations and it is rather convenient for incorporating nonstatic and relativistic
corrections [50,51]. Because of inherent restrictions of the potential picture, our analysis
covers energies below pion photoproduction threshold.

Our model is essentially nonrelativistic. However, we include a few most important
relativistic corrections (like the spin-orbit interaction) into the one-body electromagnetic
current and seagull. After a brief description of the notion of the seagull given in the
next Section, we introduce the Hamiltonian of the model and analyze one- and two-
body electromagnetic operators. Then we calculate the Compton scattering amplitude and
discuss the obtained results.

2. Hamiltonians, currents and seagulls

In the framework of the time-ordered perturbation theory, a computation of the photon
scattering amplitude starts with a specification of system’s effective degrees of freedom and
the system’s HamiltonianH [A], including its dependence on the external electromagnetic
vector potentialAµ. We need both linear and quadratic terms in the expansion ofH [A]
in powers ofAµ which determine operators of the electromagnetic currentjµ(x) and
the electromagnetic seagullSµν(x, y) for the system and, correspondingly, the so-called
resonanceR and seagullS parts of the Compton scattering amplitude. Simplifying a real
situation, we write
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H [A](t)=H(t)+
∫ [
jµ(x)A

µ(x)
]
x0=t d

3x

− 1

2

∫ ∫ [
Sµν(x, y)A

µ(x)Aν(y)
]
x0=y0=t d

3x d3y + · · · , (2.1)

whereSµν(x, y) = Sνµ(y, x) is assumed to be a symmetric function of its arguments.
Accordingly, the photon scattering amplitude of

|i〉 + γ (ε, k)→|f 〉 + γ ′(ε′, k′) (2.2)

reads

T (ω, θ)=R(ω, θ)+ S(ω, θ) (2.3)

to leading orderO(e2), where

R(ω, θ)=
∑
n

〈f |ε′∗µjµ(−k′)|n〉〈n|ενjν(k)|i〉
En −Ei −ω− i0 + (ε↔ ε′∗, k↔−k′) (2.4)

and

S(ω, θ)= 〈f ∣∣ε′∗µενSµν(−k′, k)∣∣i〉. (2.5)

Hereω= k0 is the photon energy,θ is the scattering angle,En are energies of eigen states
|n〉 of the system,jµ(k) means a Fourier component of the current density, i.e.,

jµ(k)=
∫ [
jµ(x)e−ik·x]

x0=0d
3x, (2.6)

and

Sµν
(−k′, k)= ∫ ∫ [Sµν(x, y)eik′·x−ik·y]

x0=y0=0 d
3x d3y. (2.7)

In a more general situation, the Hamiltonian (2.1) can depend on time derivatives of the
vector potential too (e.g., owing to a presence of terms dependent on the electric field).
Nothing changes then in Eqs. (2.4)–(2.5) with the except that the Fourier components of
the current and seagull become dependent on both the space and time components of the
photon momenta.

As is well known, the structure of the effective Hamiltonian (and thus that of the
current and seagull too) is closely related with a choice of the effective degrees of
freedom. In the present context of low-energy deuteron Compton scattering, we consider
nonrelativistic nucleons as the only dynamical variables of the system, whereas all mesons,
antinucleons and other degrees of freedom are encoded into the internal structure and
effective interactions of the nucleons themselves. Such an approach is certainly applicable
at energies below pion threshold.

With this choice, the resonance amplitudeR comes from low-lying (two-nucleon)
intermediate excitationsn of the deuteron, including the deuteron itself. It corresponds
to two-step scattering via photon absorption followed by photon emission and vice versa.
This piece can have and generally has the imaginary part. Meanwhile, the seagull amplitude
S is real and corresponds to processes, in which the photon absorption and emission
happens at indistinguishable time moments, as seen at the considered energy scale. Among
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such processes are excitations of heavier intermediate states likeπNN, which describe, in
particular, meson exchanges between photon interaction points and an internal structure
of the nucleon related with intermediate-meson production. Considering meson-exchange
processes in general as instantaneous (unretarded) and neglecting dependence of meson
propagators on the photon energy, we retain a retardation correction for the pion exchange
which is known to be quite important in the seagull amplitudeS and to lead to effective
modifications of nucleon polarizabilities in nuclei [52]. As for contributions toS due to
the nucleon internal structure, it is taken into account by introducing polarizabilities of the
nucleon.

Both the current operatorjµ(x) and the seagull operatorSµν(x, y) have to be
consistent with the nuclear HamiltonianH(t) of the system and satisfy conditions of
the gauge invariance. Generally, these conditions take the form of the conservation of the
electromagnetic currentjµ[A](x) found in the presence of the external vector potentialAµ:

0= ∂µjµ[A](x)= ∂kjk[A](x)+ i
[
H [A](t), j0[A](x)

]+ ∂0
Aj0[A](x). (2.8)

Here the Latin indexk runs over the space components and the time derivative∂0
A acts only

on the external potentialAµ. In the simplest case of the time-local Hamiltonian (2.1) the
currentjµ[A](x) is given by the three-dimensional variational derivative ofH [A],

jµ[A](x)= δH [A](t)
δAµ(x)

= jµ(x)−
∫
Sµν(x, y)A

ν(y) d3y + · · · . (2.9)

In this case the term with∂0
A in Eq. (2.8) must vanish, since this is the only piece

which depends on the time derivative ofAµ. Therefore, the charge densityj0[A](x) is
A-independent, and the following consistency equations emerge [53,54]:[

j0(x),H(t)
]=−i

∂jk(x)

∂xk
(2.10)

and [
j0(x), j

µ(y)
]= i

∂Skµ(x, y)

∂xk
, Sk0(x, y)= S00(x, y)= 0. (2.11)

Here all operators are taken at the same time momentt = x0= y0.
In the nonrelativistic approximation, which will be used in the following consideration

of two-bodyeffects, the charge densityj0(x) is not affected by meson exchanges (Siegert’s
theorem) and therefore coincides with the one-body charge density of the two nucleons
i = 1,2:

j0(x)= j [1]0 (x)=
∑
i=1,2

eZiδ(x− r i ), Zi = 1+ τ zi
2

. (2.12)

Then Eqs. (2.10) and (2.11) give relations between the nuclear (two-body) potentialV

standing in the nuclear HamiltonianH and the two-body parts of the current and seagull,
j
[2]
µ andS[2]µν :[

j
[1]
0 (x),V

]=−i∇ · j [2](x), (2.13)
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and [
j
[1]
0 (x), j [2]l (y)

]= i
∂S
[2]
kl (x,y)

∂xk
. (2.14)

The resonance and seagull contributions at zero energy are constrained by the Thirring’s
low-energy theorem. Within the nonrelativistic accuracy we have

T (0, θ)=R(0, θ)+ S[1](0, θ)+ S[2](0, θ)=−Z
2e2

AM
ε · ε′∗, (2.15)

whereM is the nucleon mass,Z = 1 andA= 2 for the deuteron, and the radiation gauge

ε0= k · ε = 0, ε′0= k′ · ε′ = 0 (2.16)

is assumed for the photon polarization vectors. In the absence of the two-body currents
and seagulls, the model-independent relation (2.15) is fulfilled due to a balance between
the one-body seagull contribution,

S[1](0, θ)=−Ze
2

M
ε · ε′∗, (2.17)

and the resonance amplitudeR(0, θ)= (NZe2/AM)ε ·ε′∗. HereN =A−Z. The presence
of the two-body currents results in an enhancement of the resonance amplitude, viz.
R(0, θ)→ (NZe2/AM)(1+ κ)ε · ε′∗ for spinless nuclei, whereκ is the enhancement
parameter standing in the modified Thomas–Reiche–Kuhn sum rule (see, e.g., the review
[6] for a discussion and further references). Then, in order to support the balance suggested
by the low-energy theorem (2.15), a two-body seagull contribution is required. It is
S[2](0, θ)=−(NZe2/AM)κε ·ε′∗ for the spinless nucleus. For a general case of a nucleus
of spin S > 1, the two-body seagull amplitude is characterized by the scalar and tensor
enhancement parameters,κ andκT:

S[2](0, θ)=−NZ
AM

e2ε′∗i εj
{
κδij + κT

[
SiSj + SjSi − 2

3S(S + 1)δij
]}
. (2.18)

Now we proceed with a consideration of free and interacting nucleons.

3. Hamiltonian for a single polarizable nucleon

3.1. Leading-order effects

Phenomenologically, the dipole polarizabilitiesᾱ and β̄ are defined as low-energy
parameters determining the quadratic-in-the-field energy shiftVpol, Eq. (1.4). This shift
has to be added to a “bare” HamiltonianH0[A] which is linear in the electromagnetic field,
describes an “unpolarizable” nucleon with the electric chargeeZ and anomalous magnetic
momenteκ/2M and produces the so-called Born contribution to the Compton scattering
amplitude. In the relativistic phenomenology, the standard choice forH0[A] and hence the
standarddefinitionof the unpolarizable nucleon is given by the Dirac–Pauli Hamiltonian

H0[A] = eZA0+ α · (p− eZA)+ βM + eκ

4M
βσµνF

µν (3.1)
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with Fµν = ∂µAν − ∂νAµ. Actually, the given form ofH0[A] is valid only for the nucleon
interacting with real photons. This is all we need in the present paper. In the more general
case, additional derivatives of the electromagnetic field appear inH0[A] as well [3]. They
account for electromagnetic form factors of the nucleon, i.e., its finite size.

Polarizabilities manifest themselves in low-energy Compton scattering as anO(ω2)

addition to the Born amplitude, the latter becoming the Thomson scattering amplitude
−(e2Z2/M)ε · ε′∗ at zero energy. In order to correctly identify the contribution of the
polarizabilities,O(ω2) terms in the Born amplitude have to be retained as well. Since
some of them are of orderO(ω2/M3), an effective low-energy Hamiltonian covering all
theO(ω2) terms has to include relativistic corrections up to orderO(M−3).

A nonrelativistic reduction of the Dirac–Pauli Hamiltonian valid to order required
was found in Ref. [19]. Using the Foldy–Wouthuysen method [55,56] or expelling
lower components and higher derivatives as described in Refs. [19,57], a lengthy but
straightforward computation gives:4

H0[A] = eZA0+ π2

2M
− (π

2)2

8M3 −
e(Z+ κ)

2M
σ ·H

− e(Z+ 2κ)

8M2

[∇ ·E+ σ · (E× π − π ×E)
]

+ eZ

8M3

{
π2,σ ·H}+ eκ

8M3
{σ · π,π ·H}

+ eκ

16M3

[{
π,∇×H − Ė

}+ (σ ×∇) · (∇×H − Ė
)]

+ e2

8M3

[(
Z2+Zκ + κ2)E2−Z2H2]+O(M−4). (3.2)

Hereπ = p − eZA is a covariant momentum,{A,B} denotes the symmetrized product
AB+BA, andĖ means the time derivative of the electric field. In the region lying outside
any sourcesJµ of the electromagnetic field, the combinations∇ ·E= J0 and∇×H− Ė=
J vanish, so that the above equation turns out even simpler.

When antinucleon degrees of freedom are removed and absorbed into new effective
interactions, the resulting effective Hamiltonian (3.2) becomes nonlinear in the electro-
magnetic field. In particular, it contains polarizability-like parts which have to be kept in
computations using nonrelativistic variables alone. Among these parts is the termκ2E2

which imitates a negative electric polarizability of the neutron and which is known due to
Foldy [58].

One can easily check that the Hamiltonian (3.2) exactly reproduces the Born amplitude
of nucleon Compton scattering to orderO(ω2) which is explicitly given, e.g., in
Ref. [3]. Moreover, all theO(ω2) terms in the scattering amplitude are retained when
the kinetic energy in the nucleon propagator is calculated to leading orderO(M−1) (i.e.,
nonrelativistically), the electromagnetic current is taken to orderO(M−2) (i.e., with the

4 We give the answer in the form obtained in Ref. [19]. In Ref. [55], the anomalous magnetic moment is not
considered and the final result contains a sign mistake. In Ref. [56] terms of orderO(en), n 6 2, were only
retained.
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spin-orbit correction), and the full electromagnetic seagull up to orderO(M−3) is taken as
it stands in Eq. (3.2).

In the present work we adopt a few further simplifications to Eq. (3.2). First, we neglect
those parts of the Hamiltonian which do not contribute to theO(ω2) terms at all. These
are theO(M−3) parts of the kinetic energy and the current. Second, we neglect the
O(M−3) part of the spin-dependent seagull which gives anO(ω2) contribution to the
Compton scattering amplitude but does not contribute to the differential cross section
of Compton scattering to orderO(ω2) with unpolarizednucleons. Third, omitting the
O(M−3) component of the kinetic energy, we omit also a∼e2Z2/M3 part of the seagull
standing in−π4/8M3; moreover, we omit such a part in the coefficients of the fields
squared. Thus, we use the following effective Hamiltonian for a single nucleon which
interacts with real photons:

H [1][A] = eZA0+ π2

2M
− e(Z+ κ)

2M
σ ·H − e(Z+ 2κ)

8M2 σ · (E× π − π × E)

− 1
2 4π(ᾱ+ δα0)E2− 1

2 4πβ̄H2, (3.3)

where5

δα0=− e
2

4π

κ2+Zκ
4M3 =

{−0.85, proton,
−0.62, neutron.

(3.4)

The corresponding electromagnetic vertices, i.e., matrix elements of the one-body current
and seagull in the momentum representation, read

εµj [1]µ
(
k;p′,p)=− eZ

2M
ε · (p+ p′

)− e

2M
(Z+ κ) iωσ · s

− e

8M2(Z + 2κ) iωσ · ε× (p+ p′
)

(3.5)

and

ε′∗µενS[1]µν
(−k′, k)=−e2Z2

M
ε · ε′∗ + e2Z

4M2
(Z+ 2κ)

(
ω+ω′) iσ · ε′∗ × ε

+ 4πωω′(ᾱ + δα0)ε · ε′∗ + 4πωω′β̄ s · s′∗, (3.6)

whereω andω′ are the initial and final photon energies,

s= k̂ × ε, s′ = k̂′ × ε′ (3.7)

are the magnetic field vectors, and we have used the radiation gauge (2.16) for the
photon polarization vectors. It is worth mentioning that the absence of the kinetic term
−p4/8M3 in the Hamiltonian (3.3) allows us to use self-consistently nonrelativistic
phenomenological potentials developed for a description ofNN interactions at low
energies.

5 The correctionδα0 has a direct relation with the difference mentioned in Section 1 betweenᾱn and the
“static polarizability” αn found in the neutron transmission experiments [20,21]. In fact, in the formalism used in
these worksαn denotes the coefficient ofE2 in the effective nonrelativistic Hamiltonian. In order to get warning
against wrong generalizations note, however, that the coefficient ofE2 in the proton case is not equal to the static
polarizability αp which differs fromᾱp by a term containing the electric radius of the proton [1,3].
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The Hamiltonian (3.3) with the leading relativistic corrections included possesses an
accuracy of aboute2/16πM3= 0.17× 10−4 fm3 for treating the leading-order effects of
the polarizabilities. For example, being used in the lab frame, the HamiltonianH [1][A]
and the vertices (3.5)–(3.6) generate the followingγN scattering amplitude at the forward
angle,

Tlab(θ = 0◦)=
(
−e

2Z2

M
+ 4πω2(ᾱ+ β̄)

)
ε · ε′∗

− e
2κ2

2M2
iωσ · ε′∗ × ε+O(ω3). (3.8)

The δα0 and spin-orbit contributions of the seagull properly correctω-dependent terms
coming from the resonance amplitudeR and bring the resulting amplitude (3.8) into an
exact agreement with a known low-energy expansion ofT (given, e.g., in Ref. [25]). At
the backward angle, the amplitude found with the Hamiltonian (3.3) reads

Tlab(θ = 180◦)=
(
−e

2Z2

M
+ 4πωω′(ᾱ − β̄)

)
ε · ε′∗

+ e
2(κ2+ 4Zκ + 2Z2)

4M2 i
(
ω+ω′)σ · ε′∗ × ε+O(ω3). (3.9)

This time an exact result is slightly different. It contains an additional term(e2Z2/2M3)×
ωω′ε · ε′∗ which comes from a recoilO(ω2)-correction to the Thomson amplitude and
which is lost in Eq. (3.9) because of omitting thee2Z2/M3 pieces of the seagull.6

3.2. Polarizabilities and the Baldin sum rule

In the case ofγ d scattering, the seagull amplitudes (2.5) for the proton and neutron
contribute coherently and dominate the scattering amplitude (2.3) at energies of a few
tens MeV. Their joint result depends only on the isospin-averaged polarizabilities of the
nucleon, viz.ᾱN = 1

2(ᾱp+ ᾱn) andβ̄N = 1
2(β̄p+ β̄n).

In the following we will consider the differencēαN − β̄N as the only free parameter of
the nucleon structure. It is hard to reliably predict this difference, because it can be affected
by t-channel exchanges with poorly known couplings (like theσ -meson exchange) – see,
e.g., Refs. [1,3]. Meanwhile the sum̄αN+ β̄N can be safely found from the well-convergent
Baldin sum rule (1.3). This is quite sufficient in the present context.

There are several evaluations of the dispersion integral in Eq. (1.3). Earlier calculations
gaveᾱp+ β̄p= 14.2± (0.3−0.5) [8,59–61] andᾱn+ β̄n= 15.8± 0.5 [60] (we comment
on the other result,̄αn + β̄n = 13.3 [61] below). A recent re-analysis [62] gave lower
values:

ᾱp+ β̄p= 13.69± 0.14, (3.10a)

ᾱn+ β̄n= 14.40± 0.66. (3.10b)

6 Making such a comparison of the two amplitudes, one has to take into account a different normalization of
the nucleon states. It is one particle per unit volume in the present paper and 2E particles in Ref. [25].
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Doing our own calculations with modern sets of photoabsorption data, we also obtain
somewhat lower values than those found in 70’s. However, they are not so low as those
in Ref. [62], especially for the neutron.

Specifically, findingσtot(ω) through the set of pion photoproduction amplitudes of
Ref. [63] at energies below 400 MeV, taking total photoabsorption cross sections from
Refs. [64,65] at energies 0.5–1.5 GeV, making a smooth mixture of the “theoretical” [63]
and experimental [64,65] cross sections in between, and using a Regge parameterization
of σtot(ω) at energiesω > 1.5 GeV (the same as in Refs. [1,60]), we obtain

ᾱp+ β̄p= 14.0, (3.11a)

ᾱn+ β̄n= 15.2. (3.11b)

Uncertainties in these numbers mainly originate from the region ofω . 500 MeV which
essentially saturates the dispersion integral. They can be again conservatively estimated as
±(0.3−0.5). For example, we obtain very close results (13.8 and 15.2, respectively) using
in this computation photo-pion amplitudes from the code SAID [66] (as of beginning of
1999) instead of the amplitudes from Ref. [63]. The lower value forᾱp+ β̄p, which follows
from the SAID amplitudes, is mainly caused by that the pion photoproduction multipole
E0+(π+n), as given by that partial-wave analysis close to pion threshold, is by∼12%
too low [67] in comparison with predictions of independent analyses like [63] and with
predictions of chiral perturbation theory [68].7 In accordance with (3.11), we accept the
following number for the isospin-averaged sum of the dipole polarizabilities of the nucleon:

ᾱN + β̄N = 14.6. (3.12)

There are several reasons why we prefer to rely on our own findings (3.11) both for the
proton and the neutron rather than on the quoted recent results (3.10). For the proton case,
the central number for the sum of the polarizabilities obtained by the authors of Ref. [62]
is shifted down by their use of the SAID amplitudes very close to pion threshold. This shift
almost explains the difference between (3.10a) and (3.11a). It is worth saying that the tiny
uncertainty±0.14 ascribed tōαp+ β̄p in Eq. (3.10a) representsonlystatistical errors in the
experimental data onσtot. It does not include systematic errors which are equal to 2–3% in
σtot and hence produce the uncertainty of at least±0.3 in ᾱp+ β̄p.

For the neutron, we are even more far from reproducing the very low value obtained
in Ref. [62]; we are also far from the result of Ref. [61], where the number obtained was
even lower. The reason might be in a different use of the (indirect) data [64] on the neutron
total photoabsorption cross sectionσtot(γ n). Close to the∆-resonance energy, the cross
sectionσtot(γ n) given in Ref. [64] is by∼20% (!) lower than predictions of all modern
partial-wave analysis of pion photoproduction. The procedure used in Ref. [64] to extract
σtot(γ n) from the primary cross sectionσtot(γ d) obtained with the deuteron target is not

7 Actually, the SAID authors gave an explicit warning against using the SAID amplitudes very close to pion
threshold [66].Addition written after the first submission of the present paper:very recently a new set of the
SAID amplitudes appeared on the SAID web-site (solution SM99K). This set is free from most above-mentioned
near-threshold problems, and its use in the evaluation of the Baldin sum rule gives results which perfectly agree
with the estimates (3.11).
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so clear in the∆-resonance region, in which medium corrections are large. That is why we
believe that the results of Ref. [64] for the neutron should not be taken seriously at energies
below 400 MeV. As was already said, in our own evaluation of Eq. (3.11b) we have found
σtot(γ n) below 400 MeV through the partial-wave analyses [63,66].

3.3. Higher-order corrections

It is clear that higher-order kinematical corrections neglected in Eq. (3.3) are suppressed
by powers ofω/M and therefore they are small below pion threshold.8 An actual accuracy
of the effective Hamiltonian (3.3) is determined by dynamical effects which originate from
the pion and∆-isobar structure of the nucleon and give corrections of the relative order
(ω/mπ)

2. They become important at energies&70 MeV. To next-to-leading order, such
effects are parametrized by eight structure constants of the nucleon, viz. the quadrupole
(αE2, βM2), dispersion (αEν , βMν) and spin (γE1, γM1, γE2, γM2) polarizabilities of the
nucleon [25,69–71], as represented by the following effective Hamiltonian [25]:

δH [1][A] =−1
2 4π

(
αEνĖ2+ βMνḢ2)− 1

12 4π
(
αE2E

2
ij + βM2H

2
ij

)
− 1

2 4π
(
γE1σ · E× Ė+ γM1σ ·H × Ḣ

− 2γE2EijσiHj + 2γM2Hij σiEj
)
. (3.13)

Here

Eij = 1
2(∇iEj +∇jEi), Hij = 1

2(∇iHj +∇jHi) (3.14)

are quadrupole strengths of the electric and magnetic fields. Such an effective interaction
contributes to the seagull amplitude ofγN scattering which gets an addition

ε′∗µενδS[1]µν
(−k′, k)

= 4πωω′
[
ε · ε′∗δα + s· s′∗δβ

+ i

2

(
ω+ω′)(σ · ε′∗ × ε(γM2 − γE1)+ σ · s′∗ × s(γE2− γM1)

)
− i
(
σ · kε · s′∗ − σ · k′s · ε′∗)γE2− i

(
σ · k′ε · s′∗ − σ · ks · ε′∗)γM2

]
. (3.15)

The functionsδα, δβ which depend on the photon energies and on the cosinez= k̂ · k̂′ of
the scattering angle,

δα =ωω′
(
αEν + z

6
αE2− 1

12
βM2

)
,

δβ =ωω′
(
βMν + z6 βM2 − 1

12
αE2

)
, (3.16)

can be handled as dynamical corrections to the dipole polarizabilitiesᾱ, β̄ standing in
Eq. (3.6).

8 The suppression inT -even observables like the differential cross section is in fact(ω/M)2.
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Using estimates for the isospin-averaged polarizabilities of the nucleon obtained through
fixed-t dispersion relations [25],

(αEν)N '−3.1, (βMν)N ' 9.1, (αE2)N ' 27.3, (βM2)N '−23.0 (3.17)

(units are 10−4 fm5), we find, e.g., that the contribution ofδα, δβ increases the backward-
angle differential cross section ofγ d scattering and makes the same change as a shift of
ᾱN − β̄N by−1,−2 and−4 at 50 MeV, 70 MeV and 100 MeV, respectively.

It is not easy to estimate a model uncertainty in the above numbers (3.17). In particular,
they are sensitive to the so-called asymptotic contributionAas

1 to the Compton scattering
amplitudeA1 which was represented by theσ -exchange of the effective massmσ = 500–
600 MeV in the framework of Refs. [25,29]. Recently, an alternative dispersion approach
was presented [30,72] which allowed to avoid an explicit introduction of theσ -exchange
and to calculate the amplitudeA1 and the quadrupole polarizabilities of the nucleon under
reasonable assumptions on the reactionsγ γ → ππ andππ → NN. 9 Specific numbers
obtained in Ref. [72] for the higher-order polarizabilities (given for the proton case only)
are rather close to those obtained earlier [25]. Their use for evaluating the deviation of the
backward Compton scattering amplitude from the low-energy expansion of orderO(ω2),
Eq. (3.9), gives only a 3% bigger effect than that obtained with our numbers (3.17). More
cautiously, we could state that the effect of the quadrupole and dispersion polarizabilities
is known within 20%, where the last number is obtained by a reasonable variation of the
effectiveσ -meson mass.

In order to evaluate the spin-dependent contribution in Eq. (3.15), we use spin
polarizabilities of the nucleon as found through the dispersion relations too [25,67,74]:

(γE1)N '−3.7, (γM1)N ' 2.3, (γE2)N ' 1.4, (γM2)N ' 0.6 (3.18)

(units are 10−4 fm4). Writing Eq. (3.18), we have corrected predictions forγ ’s of Refs. [25,
67] which include a poorly constrained asymptotic contributionAas

2 arising in the fixed-t
dispersion relation for the invariant amplitudeA2 of nucleon Compton scattering. Since
Aas

2 determines the backward spin polarizability of the nucleon,γπ = −γE1 + γM1 +
γE2− γM2, which was recently reevaluated through a more reliable backward dispersion
relation [74], we have introduced the appropriate changes toγ ’s. Specifically, they are
δ(γE1)N = −δ(γM1)N = −δ(γE2)N = δ(γM2)N = −1

4δ(γπ )N, whereδ(γπ)N ' −4 is a
correction to the previous estimate [25,67] of(γπ)N. About one half of that corrections
stems from theη andη′ exchanges. At backward angles, the spin effects of orderO(ω3)

result in enhancing the coefficient(e2/4M2)(κ2+ 4Zκ + 2Z2) in Eq. (3.9) by 2πωω′γπ
with (γπ)N ' 7 and make an increase in the differential cross section of backward-angle
γ d scattering which is about one third of what the(δα, δβ) correction does.

Recently, there was a controversy on the value ofγπ , at least for the proton. It was
experimentally found [13] that(γπ)p = −27.1 ± 2.2+2.8

−2.4 (in units of 10−4 fm4) and,
therefore, it largely deviates from theoretical predictions [25,67,74,75] which give(γπ)p=

9 There are many predecessors of this approach, of which we would like to indicate Refs. [26,27,73] as most
recent works, in which further references can be found.
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−36.7 to−39.5 and(γπ)n = 50.3 to 52.5. Taking this deviation seriously and assuming
that the isospin-averaged backward spin polarizability(γπ)N may differ from the above-
accepted value of(γπ)N = 7 by as much as+10, we should conclude that the theoretical
differential cross section ofγ d scattering at backward angles is visibly enhanced due
to the effect of(γπ)N. Accordingly, the value of̄αN − β̄N extracted, for instance, from
100 MeV data onγ d scattering should be shifted up by as much as+2× 10−4 fm3, what
is not negligible! On the other hand, recent Mainz measurements of backward-angle proton
Compton scattering [76] done with the deuterium target give the differential cross section
which is lower than that obtained at LEGS [13], and these newer cross sections assume
that the theoretical value of(γπ)p ≈ −37 is fully compatible with the data. Moreover,
recent Mainz measurements of proton Compton scattering data done with the hydrogen
target [77] seem to fully exclude the previous finding [13] as well and to completely agree
with the quoted theoretical predictions. In view of that, we rely our following analysis on
the theoretical values of the spin polarizabilities of the nucleon specified by Eq. (3.18)
and assume that the related theoretical uncertainties in extractingᾱN − β̄N are less than
≈ 0.5× 10−4 fm3.

At forward angles, all the higher-order corrections (3.15) are less important.

4. Two-body currents and seagulls

4.1. Potential-induced electromagnetic currents and seagulls

The remaining part of the HamiltonianH [A] is related with two-body interactions
of the nucleons. In the absence of the electromagnetic fields, such interactions can be
represented by a (generally nonlocal) NN-potentialV which has to accurately describe
differential cross sections and polarization observables in NN scattering at energies below
pion threshold, as well as the deuteron binding energy. There are several phenomenological
potentials of that sort in the literature. We have chosen to use the Bonn potential
(specifically, its nonrelativistic version OBEPR) [78,79], because it implies a very simple
physical picture of one-boson exchanges (OBE) mediating the NN interaction and, in
the framework of this picture, allows constructing the meson-exchange currentj

[2]
µ and

the meson-exchange seagullS[2]µν directly from the corresponding Feynman diagrams. Of
course, the OBE picture cannot be true in all detail. However, at least, it takes fully into
account the most important long-range contribution, which is the one-pion exchange.

In the momentum representation, the OBEPR potential has the form

V
(
p′1,p′2;p1,p2

)= ∑
α=π,η,δ,σ,ω,ρ

V α
(
p′1,p′2;p1,p2

)
, (4.1)

wherepi andp′i are the initial and final momenta of theith nucleon subject to the constraint
p1+ p2= p′1+ p′2, andV α are potentials stemming from the exchanges with the specified
mesonsα = π , η, δ (which isa0(980) in the modern notation),σ , ω andρ (see Fig. 1a).

Let us consider in some details the pion exchange which determines the long-range part
of V and gives the biggest contribution to the matrix elements of MEC and MES relevant



464 M.I. Levchuk, A.I. L’vov / Nuclear Physics A 674 (2000) 449–492

(a) (b) (c)

Fig. 1. The one-boson-exchange potential (a), and the corresponding meson-exchange current (b)
and meson-exchange seagull (c). Strong and radiativeαNN vertices include antinucleons (due to PS
couplings and/or relativistic corrections) and form factors.

to low-energyγ d scattering. The potentialV π is velocity-independent, i.e., it depends only
on the momentum transferq:

V π(q)=− g2
π

4M2 σ 1 · qσ 2 · qτ1 · τ2Gπ(q). (4.2)

Heregπ is theπ NN coupling constant, and the functionGπ ,

Gπ(q)= F 2
π (q)

q2+m2
π

, (4.3)

contains the pion propagator and theπ NN vertex form factor of the monopole form,

Fπ(q)= Λ
2
π −m2

π

Λ2
π + q2

, (4.4)

given by the isospin-averaged mass of the pion,mπ , and the cutoff parameterΛπ .
The pion-exchange currentjπµ can be obtained by attaching the photon line to the

exchange pion and to theπ NN vertices as shown in Fig. 1b, in which the electromagnetic
γπ NN vertex arises due to a momentum dependence of theπ NN coupling. This
momentum dependence comes partly from the derivative, or the factor ofq, standing in
theπ NN vertex (or, equivalently, from a contribution of antinucleons in the formalism of
the pseudo-scalar coupling adopted in Refs. [78,79]). Then the minimal substitution

∇(τ · π)→∇(τ · π)− ieA
[
τ z

2
,τ · π

]
(4.5)

in the effectiveπ NN Lagrangian generates the well-known Kroll–Ruderman component
of the γπNN vertex. An additional momentum dependence is introduced by the vertex
form factor, Eq. (4.4), and it should also be taken into account.

Without knowing the dynamical nature ofFπ(q), there is no unique way to restore the
electromagnetic current associated with the form factor. Different prescriptions proposed
in the literature for maintaining gauge invariance in such cases (see, e.g., Refs. [80–
88]) give different answers, especially in the region of high momentaq . Fortunately,
at low momentaq � Λπ which are only relevant to the present consideration, such
ambiguities are expected to be small, as is suggested by the Siegert’s theorem. In the
following we choose a simple phenomenological way explicitly formulated by Riska [82]
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(a) (b) (c)

Fig. 2. (a) The meson–nucleon form factorFα(q) viewed as resulting from an intermediate
heavy-boson exchangeΛ. (b) and (c): corresponding contributions to the electromagnetic me-
son–nucleon vertices.

and Mathiot [83].10 That is, we assume that the vertex form factor (4.4) results from
a propagation of a fictitious particleΛ of the massΛπ , which has the same quantum
numbers as the pion and mediates the pion interaction with the nucleon (see Figs. 2a
and 3a). Accordingly, the photon interacts with the particleΛ as well (Fig. 2b), and this
gives an additional contribution to the vertexγπ NN which restores the fulfillment of the
generalized Ward–Takahashi identities [89] for the transition amplitude ofγ N→ π N and
restores the electromagnetic current conservation in the meson–nucleon system.

Evaluating the diagrams shown in Fig. 1b with the vertices shown in Fig. 2b and with the
staticpropagators of all particles,11 we obtain the well-known result for the pion MEC:

jπ
(
k;p′1,p′2;p1,p2

)
=−ie(τ1× τ2)

z g
2
π

4M2

[
σ 1(σ 2 ·q2)Gπ(q2)− (1↔2)

]
+ ie(q1− q2)(τ1× τ2)

z g
2
π

4M2 σ 1 · q1σ 2 · q2G1π(q1,q2). (4.6)

Here we introduced the function (cf. Refs. [82,83])

G1π(q1,q2)= Fπ(q1)Fπ (q2)

(q2
1+m2

π)(q
2
2+m2

π)

[
1+ q2

1+m2
π

q2
2+Λ2

π

+ q2
2+m2

π

q2
1+Λ2

π

]
, (4.7)

which provides a combination of propagators of the exchanged pion and the particleΛ as
they appear in the case of a line with one electromagnetic vertex (see Fig. 3b). The vectors

q1= p′1− p1, q2= p′2− p2 (4.8)

are the momenta transferred to the nucleons. These momenta are subject to the constraint
q1+ q2= k, wherek is the momentum of the incoming photon. Using the identity

Gπ(q1)−Gπ(q2)=
(
q2

2− q2
1

)
G1π(q1,q2), (4.9)

one can easily check that the pion-exchange current (4.6) satisfies Eq. (2.13), which has
the following form in the momentum representation:

10 In essence, the solution given by Riska and Mathiot was earlier obtained by Arenhövel [80], who used the
minimal substitution (4.5) and considered the specific case when the monopole form factor (4.4) appears to the
first power in the potentialV π(q). A straightforward generalization to the case when this form factor is squared,
as in Eq. (4.3), is easily derived through a differentiation with respect toΛπ [88]. After this differentiation, the
Arenhövel’s prescription [80] becomes identical to that proposed by Riska and Mathiot [82,83].
11 Nonstatic, i.e., retardation, corrections will be considered in the next subsection.
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(a) (b) (c)

Fig. 3. Modifications of a light-boson propagator by intermediate heavy bosonsΛ. The cases shown
are with zero, one, and two photon vertices on the line.

k · jπ (k;p′1,p′2;p1,p2
)= eV π (p′1,p′2;p1+ k,p2

)
Z1

− eZ1V
π
(
p′1− k,p′2;p1,p2

)+ (1↔ 2). (4.10)

HereZi (i = 1,2) are the electric charges of the first and second nucleon, Eq. (2.12).
The pion-exchange seagullSπµν is determined by the diagrams shown in Fig. 1c. There,

the electromagnetic meson–nucleon vertices include again the form factors generated by
the fictitious particleΛ through the mechanism shown in Figs. 2b and 2c. In the case
of the pion exchange the very first diagram of Fig. 2c is absent. However, it contributes
when the strong meson–nucleon vertex of the OBE potential has a quadratic dependence
on the particle momenta. This is the case forσ , δ, ω and ρ exchanges (see Ref. [79,
Appendix A.3]). Evaluating the diagrams in Fig. 1c, we obtain

ε′∗i εj Sπij
(−k′,k;p′1,p′2;p1,p2

)
= e

2g2
π

4M2
T12
[
σ 1 · εσ 2 · ε′∗Gπ(K1)+ (1↔ 2)

]
− e

2g2
π

4M2
T12
{[
σ 1 · εσ 2 · q2(q2−K1) · ε′∗G1π(K1,q2)+ (1↔ 2)

]
+ (ε↔ε′∗,K1↔−K2

)}+ e2g2
π

4M2
T12σ 1 ·q1σ 2 ·q2Dπ(q1,q2,K1,K2). (4.11)

Hereq1 andq2 are again given by Eq. (4.8), and the vectorsK1 andK2 are defined as

K1= q1− k =−q2− k′, K2= q2− k =−q1− k′. (4.12)

The isotopic factorT12 is equal to

T12= T21= τ1 · τ2− τ z1τ z2 . (4.13)

The functionDπ is proportional to the amplitude of pion Compton scattering modified by
the form factor corrections. It reads

Dπ(q1,q2,K1,K2)

= 2ε · ε′∗G1π(q1,q2)

+ [(q1+K1) · ε(q2−K1) · ε′∗G2π(q1,q2,K1)+ (1↔ 2)
]
. (4.14)

Here the function
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G2π(q1,q2,K )

= Fπ(q1)Fπ (q2)

(q2
1+m2

π)(q
2
2+m2

π)(K2+m2
π )

[(
1+ q2

1+m2
π

K2+Λ2
π

)(
1+ q2

2+m2
π

K2+Λ2
π

)
+
(

q2
1+m2

π

q2
2+Λ2

π

+ q2
2+m2

π

q2
1+Λ2

π

)
K2+m2

π

K2+Λ2
π

]
(4.15)

provides a combination of propagators of the exchanged pion and the particleΛ as they
appear in the case of a line with two electromagnetic vertices (see Fig. 3c). Writing
Eq. (4.11), we did not assume any special gauge for the photon polarizations. Therefore,
that equation specifies all individual components of the tensorSπij . Using Eq. (4.9) and the
identity

G1π(q1,q2)−G1π(K ,q2)=
(
K2− q2

1

)
G2π(q1,q2,K ), (4.16)

one can check that the obtained MES satisfies Eq. (2.14). In the momentum representation,

−kjSπij
(−k′,k;p′1,p′2;p1,p2

)= ejπi (−k′;p′1,p′2;p1+ k,p2
)
Z1

− eZ1j
π
i

(−k′;p′1− k,p′2;p1,p2
)

+ (1↔ 2). (4.17)

We may note that formulas for the seagullSπij (in the r -space) were derived long ago
in Refs. [42,90] by considering the appropriate Feynman diagrams, and in Ref. [54] by
using the minimal substitution. Neither of those considerations, however, takes into account
theπ NN vertex form factor. Therefore, in order to achieve a consistency with the pion-
exchange potential (4.2), we do need Eq. (4.11).

Meson-exchange currentsjα and seagullsSαij related with other bosonsα of the OBE
potential can be derived in a similar way. Formulas forjα were already obtained in
Ref. [51]. Newer results forSαij are given in Appendix A.

All the considered MECs and MESs can be called potential-induced, because they
contain only those pieces which are intimately related with the OBE potential itself and
which are needed to fulfil the electromagnetic current conservation in the NN system as
given by Eqs. (2.8), (2.13) and (2.14). Nonpotential contributions toj [2] andS[2]ij also exist,
and now we proceed with a consideration of them.

4.2. Nonpotential contributions

The most important degree of freedom explicitly missing in the OBE-potential picture
of the NN interaction at low energies is an excitation of the intermediate∆-isobar.
Nevertheless, within the purely hadron sector (viz. NN) effects of the∆-excitation are
indirectly included owing to the use of fitted parameters adjusted to the experimental data
on NN scattering. Then, in accordance with the Siegert’s theorem, the electric contributions
to MEC and MES found with such parameters take the effects of the∆ into account as well,
at least in the long wave-length approximation.

This mechanism, however, does not work for magnetic contributions to MEC and
MES which have to be added independently. The dominating (long-range) parts of such
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(a) (b)

Fig. 4. The effectiveγ αNN andγ γ αNN vertices. Forα = π they take into account the∆-resonance
contribution.

contributions come from the one-pion exchange, and they appear through modifications
0∆γπ , 0∆γγπ of the effectiveγπ NN andγ γπ NN vertices caused by theγN∆ transition
(see Fig. 4). We do not include similar modifications for the case of theρ meson,
because they are completely negligible in the present context. It is worth noticing that
the vertex0∆γγπ appears due to the momentum dependence of theπ N∆ coupling,
and it is needed to maintain the gauge-invariance of the resulting Compton scattering
amplitude.

Being used for evaluation of the diagrams in Fig. 1b, the0∆γπ component of theγπ NN
vertex gives the following contribution to MEC:

jπ∆
(
k;p′1,p′2;p1,p2

)
= igπg∆γ g

∆
π

36M2

[
σ 2 · q2Gπ(q2)

M∆ −M −ω
(
2τ z2 − i(τ1× τ2)

z
)
(2q2− iσ 1× q2)× k

+ (τ1→−τ1,σ 1→−σ 1,ω→−ω)
]
+ (1↔ 2). (4.18)

Writing this equation, we assumed that the form factor of theπ N∆ vertex was equal to
that of theπ NN vertex. The mass and couplings of the∆ are taken to be [91]

M∆ = 1225 MeV, g∆γ = 0.282e
M∆ +M
mπ

, g∆π =
2.18

mπ
. (4.19)

Actually, the crossed term in (4.18), i.e., the term havingM∆−M+ω in the denominator,
vanishes when the operatorjπ∆ acts upon the deuteron state which has the isospinI = 0.

The∆-isobar contributes to the seagull operator too. This happens in two ways. First,
the0∆γπ component of theγπ NN vertex works in the diagrams with one or two contact
single-photon vertices shown in Fig. 1c. This gives a contribution which, together with
pieces without∆, can be written through (off-shell) pion photoproduction amplitudes as

ε′∗i εj S
π+π∆
ij

(−k′,k;p′1,p′2;p1,p2
)

= T (γN1→ πaN ′1)T (πaN2→ γ ′N ′2)
K2

1+m2
π

+ (1↔ 2), (4.20)

whereK1 is given by Eq. (4.12), and the sum over the pion’s isospin indexa is assumed
(see Figs. 5a and 6). Second, the0∆γγπ component of theγ γπ NN vertex works in the first
two diagrams of Fig. 1c with the contact two-photon vertex. This gives the contribution
shown in Fig. 5b:
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S
[2]
µν = + + (1↔ 2)+

(a) (b) (c)

Fig. 5. The diagrammatic representation of the two-body seagullS[2]. The content of the pion
photoproduction amplitudeTγπ is explained in Fig. 6.

Fig. 6. The amplitude of pion photoproduction.

ε′∗i εj S
π∆(c)
ij

(−k′,k;p′1,p′2;p1,p2
)

= iT12
gπg

∆
γ g

∆
π

36M2

{
σ 2 · q2Gπ(q2)

M∆ −M −ω
[
2ωε′∗Λ · s+ 2ω′εΛ · s′∗ − iωσ 1 · ε′∗Λ × s

+ iω′σ 1 · εΛ × s′∗
]+ (1↔ 2)

}
+ (ε↔ ε′∗,k↔−k′,ω→−ω′). (4.21)

Heres ands′ are given by Eq. (3.7). The meson–baryon form factor and the appropriate
electromagnetic coupling with the fictitiousΛ-boson (Fig. 2b) are included into Eq. (4.21)
via the use of the vertex functionGπ(q2) and the modified polarization vectors

εΛ = ε− 2K1
ε ·K1

K2
1+Λ2

π

(4.22)

(and the same forε′Λ; under the crossing,K1→−K2 ands↔ s′∗).
Another feature missing in the potential picture of the NN interaction is that the

exchange-boson fields are generally nonstatic. Nonstatic, or retardation, effects are most
important for the pion exchange due to its large range. It was recently emphasized by
Hütt and Milstein in their studies of Compton scattering by heavy nuclei [52] that the
retardation correction gives a noticeable contribution toπ -MES and to the Compton
scattering amplitude. In the framework of our formalism, we take this correction into
account by using the retarded pion propagator in Eq. (4.20):

1

K2+m2
π

→ 1

K2+m2
π −ω2 '

1

K2+m2
π

+ ω2

(K2+m2
π)

2 . (4.23)

Here we neglect the energy carried by the nucleons and replace the pion energy by the
photon one,ω. The adopted procedure is not fully self-consistent, because we neglect
retardation corrections to theπ -MEC and to the pion-exchange potentialV π . However,
the omitted corrections are expected to be less significant than the retardation correction to
the seagull amplitude (cf. Refs. [52,92]).
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5. Computation of the amplitudes and cross sections

We do actual computations of the scattering amplitudeT (Eγ ,2γ ) in the center-of-mass
frame of theγ d system. Accordingly,ω = ω′ andk, k′ mean the energy and momenta of
the photons in the CM frame; also,2γ means the CM scattering angle. The symbolEγ is
reserved to denote the photon beam energy in the Lab frame. To specify polarizations of the
particles, we introduce thehelicitiesof the photons (viz.λ andλ′) and the spinprojections
of the deuteron and nucleons to the beam directionez (viz.m,m1 andm2). In the radiation
gauge (2.16),

ε =− 1√
2
(λex + iey), ε′ = − 1√

2

(
λ′ex ′ + iey

)
, (5.1)

where the axisx ′ is orthogonal tok′ and lies in the reaction planexz.
Using the seagull operatorS[1]1µν(−k′, k) specified in Section 3, we obtain the one-

body seagull amplitudeS[1](Eγ ,2γ ) through a loop integral in the momentum space (see
Fig. 7a):

〈λ′,m′|S[1](Eγ ,2γ )|λ,m〉 =
∫

dp
(2π)3

Ψm′∗
m′1m2

(
p− 1

2 k′
)
Ψm
m1m2

(
p− 1

2 k
)

× 〈m′1,m2|ε′∗i εj S[1]1 ij (−k′, k)|m1,m2〉+ (1↔2).(5.2)

The notation here is that the state-vectors like|m1,m2〉 are used to designate only spin
variables of the particles. The momentum variables, if any, are indicated as arguments of
the operators. The sum is always taken over spin projections of intermediate nucleons. The
subscript 1 inS[1]1µν(−k′, k) points out that this operator acts on the nucleon 1.

The deuteron wave functionΨm
m1m2

(p) depends on the relative momentump of the
nucleons. For the nonrelativistic Bonn potential, one can use analytical parameterization
of Ψm

m1m2
(p) given in Ref. [51]. Note that the authors of the Bonn potential published

three nonrelativistic versions of that potential which we label OBEPR(A), OBEPR(B)
and simply OBEPR. The only difference between these versions is in boson’s masses,
couplings and form factors used. The parameters of OBEPR are specified in Ref. [78,
Table 14]. Parameters of OBEPR(A) and OBEPR(B) are given in Ref. [79], Table A.3,
part A and part B, respectively. We always give our predictions obtained with the OBEPR
version unless other stated explicitly.

Similarly to Eq. (5.2), the two-body seagull amplitudeS[2](Eγ ,2γ ) is given by a two-
loop integral over the nucleon’s momenta (see Fig. 7b):

(a) (b)

Fig. 7. The one- and two-body seagull amplitudes ofγ d scattering.
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〈λ′,m′|S[2](Eγ ,2γ )|λ,m〉
=
∫ ∫

dpdp′

(2π)6
Ψm′∗
m′1m′2

(
p′ − 1

2 k′
)
Ψm
m1m2

(
p− 1

2 k
)

× 〈m′1,m′2|ε′∗i εj S[2]ij (−k′,k;p′ − k′,−p′;p− k,−p)|m1,m2〉. (5.3)

To evaluate this amplitude, we perform integrations overp, p′ and sum over spin variables
numerically. Some details of the integration procedure are given in Ref. [51].

In order to calculate the resonance amplitudeR(Eγ ,2γ ), we introduce the off-shell
T -matrix of NN scattering,TNN(E), and write the propagatorG(E) = (E − H + i0)−1

standing in Eq. (2.4) in the form

G(E)=G0(E)+G0(E)TNN(E)G0(E), (5.4)

whereG0(E) = (E − H0 + i0)−1 is the propagator of free nucleons. ThenR(Eγ ,2γ )
turns out to be the sum of two terms, without and with NN rescattering in the intermediate
state (see Fig. 8; cf. Ref. [43]). The term without rescattering reads

〈λ′,m′|Rno rescat(Eγ ,2γ )|λ,m〉

=
∫

dp
(2π)3

(
p2

M
−Ek − i0

)−1

〈λ′,m′|Tγd(−k′;p;pd + k)|m1,m2〉
× 〈m1,m2|Tγd(k;p;pd + k)|λ,m〉 + (ε↔ ε′∗, k↔−k′). (5.5)

HereTγd(k;p,P) denotes the amplitude of deuteron photodisintegration without the final-
state interaction (see Fig. 9) at the relative momentump of the intermediate nucleons and
the total momentumP. The energyEk in Eq. (5.5) is equal to

Ek = ω+ p2
d

4M
−∆− (pd+ k)2

4M
, (5.6)

where∆ is the deuteron binding energy. The deuteron momentumpd is equal to−k in the
CM frame, and it is unchanged when the crossing transformationk↔−k′ is applied. The
procedure of a computation ofTγd was the same as in Ref. [51], and we refer to this paper
for further details and comments. Here we note only that the two-body contribution toTγd ,

(a) (b)

Fig. 8. The resonance contributionR. Shown are terms without and with NN-rescattering.

= + + (1↔ 2)+
︸ ︷︷ ︸

j [2]µ

Fig. 9. Structure of theγ d→NN vertex.
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〈m1,m2|T [2]γ d (k;p;0)|λ,m〉

=
∫

dp′

(2π)3
Ψm
m′1m′2

(
p′ − 1

2 k
)〈m1,m2|ε · j [2](k;p,−p;p′ −k,−p′)|m′1,m′2〉, (5.7)

contains a loop integral overp′. Since we do not carry out angular integrations analytically,
the evaluation of Eq. (5.5) actually involves a 9-dimensional numerical integration. Such
a computational work was hard but it was done with reasonable computer resources. We
have carefully controlled that the number of chosen nodes of integrations was sufficient
to predict the observables ofγ d scattering like the differential cross section with the
numerical accuracy better than 1%.

The resonance amplitude with NN rescattering has the form

〈λ′,m′|Rrescat(Eγ ,2γ )|λ,m〉

= −
∫
dpdp′

(2π)6

(
p2

M
−Ek − i0

)−1(p′2

M
−Ek − i0

)−1

× 〈λ′,m′|Tγd(−k′;p′;pd + k)|m′1,m′2〉〈m′1,m′2|TNN(Ek;p′,p)|m1,m2〉
× 〈m1,m2|Tγd(k;p;pd+ k)|λ,m〉 + (ε↔ ε′∗, k↔−k′). (5.8)

Here the NN scatteringT -matrix is determined by the NN potentialV through the
Lippmann–Schwinger equationTNN(E)= V + VG0(E)TNN(E). It is difficult to evaluate
Eq. (5.8) straightforwardly. In order to simplify the computation, we used a separable
approximation toTNN. Actually, we tookTNN from Ref. [93], in which the separableT -
matrix was built for the Paris potential [94]12 (see Ref. [32] for an explicit form ofTNN

given in our notation and normalization).
Since the off-shell properties ofTNN for the Paris and Bonn potentials are not the

same, the use of the “Paris”T -matrix in Eq. (5.8) spoils the self-consistency of the whole
calculation and even violates the gauge invariance of the resulting Compton scattering
amplitude. A small mismatch appears between the resonance and seagull amplitudes at all
energies, so that the balance (2.15) prescribed by the low-energy theorem is not exactly
fulfilled. At zero energy and forward scattering angle we getTs.a.(0,0) = −0.47 for the
spin-averaged (s.a.) amplitude of deuteron Compton scattering instead of the correct value
of −0.50 (it is given in units ofe2/M used here and below for the amplitude). For the
spin-flip (s.f.)γ d→ γ d transition|1,−1〉→ |−1,1〉 we getTs.f.(0,0)=−0.02 instead of
zero.

We believe, however, that the use of the “Paris”T -matrix in Eq. (5.8) does not lead to
practical problems at energies of a few tens MeV, because the rescattering contribution
decreases with the energy. For example, atEγ = 50 MeV and2γ = 0 the amplitude (5.8)
is equal toRrescat

s.a. = 0.009− i0.076, what should be compared with the rest amplitude
T no rescat

s.a. =−1.097+ i0.315 (found without nucleon-polarizability corrections). At larger
angles the role of the rescattering contribution is even less important, as will be illustrated
in the next section.

12 To our knowledge, a separable approximation to theT -matrix of OBEPR does not exist in the literature.
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Given the Compton scattering amplitude〈λ′,m′|T |λ,m〉, we find the differential cross
section ofγ d scattering in the CM frame as

dσ

dΩγ
= 1

6

(
Ed

4πW

)2 ∑
λ′m′,λm

∣∣〈λ′,m′|T |λ,m〉∣∣2, (5.9)

whereEd=
√
(2M −∆)2+ω2 andW =Ed+ω are the deuteron and total energies in the

CM frame. The photon beam asymmetry is

Σ = dσ
⊥ − dσ ‖

dσ⊥ + dσ ‖ =
2 Re

∑
λ′m′,m〈λ′,m′|T |1,m〉〈λ′,m′|T |−1,m〉∗∑

λ′m′,λm |〈λ′,m′|T |λ,m〉|2
, (5.10)

wheredσ⊥ anddσ ‖ are the differential cross sections for the incoming photons polarized
perpendicular or parallel to the reaction planexz, respectively.

6. Results and discussion

6.1. Zero-range limit

Before discussing results of the full model, let us consider the limiting case of a
very weak binding of the deuteron. Specifically, let us assume that the typical nucleon
momentumα =√M∆, which is 45.7 MeV in reality, is much less than the pion mass. Said
differently, we assume that the internucleon distancer ∼ α−1 in the deuteron is much larger
than the NN-potential range. Moreover, we assume that the photon energy is also small,
ω = O(α), so that all effects related with recoil corrections 1/M can be safely neglected
too. In this limit the two-body contributions to the electromagnetic current and seagull
become negligible, and so does the rescattering contribution (5.8). Therefore, the Compton
scattering amplitude is determined by the one-loop diagrams involving the operatorsS[1],
j [1] and the asymptotic wave function of the deuteron,

Ψm
m1m2

(p)'
√

8πα

p2+ α2
C1m

1
2m1,

1
2m2

. (6.1)

HereC1md
1
2m1,

1
2m2

is the Clebsch–Gordon coefficient. Keeping the terms of leading order over

1/M in the electromagnetic operators and in the energy (5.6) of the intermediate nucleons,
and calculating analytically the integrals (5.2) and (5.5), one arrives at the followingγ d

scattering amplitude [35,36,47]:13

T (Eγ ,2γ )

' e2

M
ε · ε′∗

{
−F0(q)− 4

3w2
+ 2

3w2

[
(1−w− i0)3/2+ (1+w)3/2]}, (6.2)

13 Bethe and Peierls [35,36] who gave the very first analysis ofγ d scattering considered so low energiesω ∼
∆� α, at which the dipole E1 approximation is applicable. Accordingly, they had the form factorF0(q) to be
equal to 1. Equation (6.2) as it is written here was given by Chen et al. [47].
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where

F0(q)= 4α

q
arctan

q

4α
(6.3)

is the deuteron form factor in the considered zero-range limit,q = |k−k′|, andw =Eγ /∆.
The term withF0(q) in Eq. (6.2) represents the seagull contribution, whereas other pieces
come from the resonance amplitudeR(Eγ ,2γ ).

As a by-product of this computation, the total cross sectionσ
γd→pn
tot (Eγ ) of deuteron

photodisintegration can be derived through the imaginary part of the (spin-averaged)
forward scattering amplitude (6.2):

ImTs.a.(Eγ ,0)=Eγσγd→pntot (Eγ )' 2e2

3Mw2 (w− 1)3/2. (6.4)

When the photon energy becomes much higher than the deuteron binding energy∆,
the amplitude (6.2) becomes equal to the proton Thomson scattering amplitude times
the deuteron form factorF0(q). This is just the seagull contributionS(Eγ ,2γ ) to the
amplitude (6.2). The rest (w-dependent) terms in Eq. (6.2) give the resonance amplitude
R(Eγ ,2γ ) which vanishes in the limit ofEγ � ∆. An instructive feature of Eq. (6.2)

is however that this vanishing is rather slow, like∝ E−1/2
γ . Therefore, the resonance

amplitude can give a 10−20% contribution to the differential cross section ofγ d scattering
atEγ ∼ 100 MeV.

In the opposite limit of very low energies, the binding corrections become large, and the
amplitude (6.2) is equal only one half of the proton Thomson scattering contribution:

T (0,2γ )=− e2

2M
ε · ε′∗, (6.5)

in exact agreement with the low-energy theorem for photon-nucleus scattering, Eq. (2.15).
The deviation of thenuclearamplitude (6.5) from thenucleonone, is related with the

resonance contributionR(0,2γ )which is equal to+ e2

2M ε ·ε′∗ in the considered zero-range
approximation. In the real case of the NN interaction of a finite range, both the seagull
and resonance amplitudes get considerable modifications. For example, the resonance
contributionR[1] from the one-body electromagnetic current becomes smaller thane2/2M
at zero energy [95]. Moreover, it depends on the deuteron spin. Omitting the rescattering
correction (5.8) and evaluating Eq. (5.5), we have found

〈±1,1|R[1] no rescat(0,0)|±1,1〉 = 〈±1,−1|R[1] no rescat(0,0)|±1,−1〉
= 0.448

e2

M
, (6.6)

but

〈±1,0|R[1] no rescat(0,0)|±1,0〉 = 0.392
e2

M
(6.7)

for the Bonn potential OBEPR.

In contrast toR[1], the total resonance amplitudeR(0,2γ ) is greater thate
2

2M ε · ε′∗ but
it is also spin dependent. These features are easily seen from the relation (2.15) and from
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the explicit expressions (2.17) and (2.18) for the one- and two-body seagull amplitudes at
zero energy.

6.2. Two-body seagull amplitude: low-energy behavior

The two-body seagull contributionS[2] to the total Compton scattering amplitude
dominates the binding corrections at energies of a few tens MeV, although the resonance
contributionR is not negligible either. One can get more insight into a physical meaning
of S[2] considering its low-energy behavior. Note thatS[2] is a regular function of the
photon energy below pion threshold, and it can be expanded in powers ofω. We have
found that keeping terms up to orderO(ω2) is generally sufficient for getting quite an
accurate approximation to results obtained through a numerical evaluation of Eq. (5.3) at
all energies up to 100 MeV. The only exception is the contribution of the∆-isobar, which
requires also aO(ω3) term linear in the deuteron spinS.

The spin-averaged part of the seagull amplitudeS[2] at the considered energies can
be described by the following most general form containing terms up toO(ω2) and
compatible with the discrete symmetries of the Compton scattering amplitude:(

S
[2]
ij

)
s.a.
◦= −NZ

AM
e2κ

(
1− 〈r

2
κ 〉
6
q2
)
δij

+ 4πA∆αω2δij + 4πA∆βω2(k̂ · k̂′δij − k̂i k̂′j ). (6.8)

Here, in our case, the number of neutrons, protons, and nucleons is equal toN = Z = 1
andA= 2, respectively. The sign

◦= is used in order to indicate that we have omitted pieces
vanishing in the radiation gauge (2.16). The four coefficients entering Eq. (6.8) were found
numerically to be equal to

κ = 0.47,
〈
r2
κ

〉= 0.49 fm2 (6.9)

and

1α =−0.72× 10−4 fm3, 1β = 0.27× 10−4 fm3. (6.10)

The coefficientκ which determines the two-body seagull amplitude at zero energy is
the same quantity which characterizes enhancement in the well-known electric-dipole
photonuclear sum rule (by Thomas–Reiche–Kuhn, or TRK). Experimental data on the total
cross section of deuteron photodisintegration seem to suggest somewhat lower value forκ

than that found from the Bonn potential, Eq. (6.9), namelyκ = 0.35± 0.10 (see, e.g.,
Ref. [96]). For the OBEPR(B) version of the Bonn potential the difference would be even
bigger since thenκ is predicted to be equal toκ = 0.50.

Discussing a comparison with the experiment, it is worth to say thatκ as defined by
Eq. (6.8) is not a direct observable but rather a (important) theoretical quantity which
appears in the theoretical formalism after eliminating explicit meson degrees of freedom.
Moreover,κ may depend on the formalism specifically chosen, because the very separation
of the total amplitudeT into the resonance and seagull parts is subject to ambiguities. This,
in turn, is because the separation of the Hamiltonian (2.1) into pieces of different order in
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the vector potentialAµ generally depends on the representation chosen and it is subject
to unitary ambiguities (including off-shell ambiguities). In this respect,κ in Eq. (6.8) is
as ill-defined and representation-dependent quantity as, for example, meson–baryon form
factors which, nevertheless, are useful and meaningful theoretical objects.

From a practical point of view, the representation ambiguity in the resonance and seagull
amplitudes is probably not crucial. An often-used and convenient choice for fixing the
resonance amplitude is to haveR(ω, θ) to vanish at high energies, as it is hold in the
dispersion theory of nuclear Compton scattering [6]. Yet, such vanishing is not exactly the
case for our theory — in part, owing to the spin-orbit contribution and also because our
theory is not relativistic. We refer to Ref. [6] for further details concerning the relevance of
the latter point.

As for the above-quoted “experimental” estimate ofκ , it appears after two theoretical
assumptions: (i) the validity of the so-called Gerasimov’s argument [97] which makes a
connection between the TRK and Gell-Mann–Goldberger–Thirring (GGT) dispersion sum
rules having deal with the unretarded E1 and retarded total cross sections, respectively, and
(ii) a little bit arbitrary cutoff at about 140 MeV in the GGT sum rule. Both assumptions are
not strict. For instance, owing to a disbalance between corrections of higher order inv/c

(viz., retardation and higher-multipole contributions), the Gerasimov’s argument is actually
violated in many models (see, e.g., Refs. [6,98,99] for further detail and references).
The quoted uncertainties in the “experimental” estimate forκ represent only the cutoff
dependence of the GGT dispersion integral, and one should take this into account when
compares the “experimental” and theoretical predictions forκ .

The presence of the parameter〈r2
κ 〉 in Eq. (6.8) implies that the energy-independent

part of the seagull has generally aq-dependent form factor, which is reduced to a linear
function of the momentum transfer squared at low energies. Numerically,κ is almost fully
determined by the pion exchange, Eq. (4.11), which givesκ = 0.44, thus leaving only
κHM =+0.03 for the contribution from heavier mesons of the Bonn potential. In contrast,
the pure pion-exchange leads to a very small radius,〈r2

κ 〉 = 0.13 fm2. Actually, the most
part of〈r2

κ 〉 comes from the pion exchange accompanied with the∆-resonance excitation,
as described by Eqs. (4.20) and (4.21).

The parameters1α and1β in Eq. (6.8) determine the energy-dependent part of the
seagull amplitude. Compared with Eq. (3.6), they can be loosely interpreted as medium
modifications to the electric and magnetic polarizabilities of the bound nucleon in the
deuteron due to meson-exchange effects. Such quantities were introduced in this context by
Hütt and Milstein [52] (following the previous works [102,103]) and analyzed for spinless
nuclei. See also Ref. [6], in which a review of a related experimental work is given.
Similarly to κ , the parameters1α and1β are representation dependent and not direct
observables. They are rather useful theoretical quantities which appear in the formalism
with eliminated meson degrees of freedom.

There is some distinction in the way how the quantities1α and1β and the free-nucleon
polarizabilitiesᾱN andβ̄N enter theγ d scattering amplitude. The medium modifications
to the polarizabilities clearly have a nonlocal, i.e., two-body (and generally, many-body)
origin, and they are expected to be accompanied with a “two-body” form factorF2(q)
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which describes a distribution of the center of the relevant nucleon pairs in the nucleus (in
the deuteron we would expectF2(q)= 1). The form factorF2(q) should be different from
the usual “one-body” form factorF(q) describing the distribution of single nucleons in the
nucleus and accompanying the contributions of the free-nucleon polarizabilities.

In the deuteron case the difference betweenF2(q) andF(q) is especially large since
the radius squared of the one-body form factor (averaged over the deuteron spin) is quite
large:〈r2〉 = 3.9 fm2. See Refs. [6,92] for a more quantitative analysis of this difference in
the case of heavy nuclei.14 Numerically, the values (6.10) are dominated by the (retarded)
pion exchange which gives alone1α =−0.99 and1β = 0.36 (in units of 10−4 fm3). The
retardation effects incorporated through Eq. (4.23) are very important here, and they give
alone1α(ret) =−0.84. The values (6.10) are similar but essentially larger, especially for
1α, than estimates obtained in Refs. [6,92] for the lightest even–even nucleus4He on the
basis of the correlated Fermi-gas approximation which is suitable for heavy nuclei.

Considering the spin-dependent part of the seagull amplitude in the similar way, one
has to introduce a few more parameters. We will not discuss all of them here and mention
only two, the tensor enhancement parameterκT and the tensor modification of the electric
polarizability1αT. They appear in the low-energy expansion of the tensor part ofS

[2]
ij : 15

(
S
[2]
ij

)
T
◦=
(
−NZ
AM

e2κT

(
1−

〈
r2
κT

〉
6

q2
)
+ 4πA1αTω

2
)

× [SiSj + SjSi − 2
3S(S + 1)δij

]+ · · · . (6.11)

We have found numerically thatκT = 0.24, so that the seagull amplitude at low energies
has a strong spin dependence. This number is again dominated by the pion exchange. The
heavier mesons of the Bonn potential OBEPR give onlyκHM

T = −0.03. As for1αT, it
gets the largest contribution from the retardation effects in the exchange-pion propagator
which give alone1α(ret)

T =−1.3× 10−4 fm3. Therefore, in contrast to the case of heavy
nuclei considered by Hütt and Milstein [52], the meson-exchange-induced modification of
the electric polarizability of the bound nucleon is essentially deuteron-spin dependent.

The retardation correction which manifests itself in the parameters1α and 1αT

increases noticeably the differential cross section. For example, this increase is equal to
5−7% at 100 MeV at all scattering angles.

The energy dependence of the two-body seagull contributionS[2] at forward scattering
angle is illustrated in upper panels of Fig. 10. It is rather flat in the case of the spin-averaged
amplitude,

S[2]s.a.(Eγ ,0)=
1

3

∑
m=−1,0,1

〈1,m|S[2](Eγ ,0)|1,m〉, S[2]s.a.(0,0)=−
e2

2M
κ, (6.12)

14 The presence of the radius〈r2κ 〉 in the two-body contribution to the seagull amplitude (6.8) implies that there is
no universal two-body form factor which accompanies both the energy-independent and energy-dependent part of
the seagull. Due to the term with〈r2κ 〉> 0, the form factor which multiplies the energy-independent part (i.e.,κ)
has a larger radius than that multiplying the energy-dependent part. This feature was also first found in Ref. [92]
for heavy nuclei.
15 A complete basis for representing spin-dependent Compton scattering amplitudes in the general case of spin
S > 1 was found by Pais [100].
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Fig. 10. The energy dependence of the spin-averaged two-body seagull amplitudeS
[2]
s.a. and the

spin-flip amplitudeS[2]s.f.. Units aree2/M . The (retarded) pion-exchange contribution is shown in
dotted lines. Successive additions of heavy mesons and the∆-isobar leads to the dashed and solid
lines, respectively.

and it is more pronounced in the case of the spin-flip amplitude,

S
[2]
s.f.(Eγ ,0)= 〈−1,1|S[2](Eγ ,0)|1,−1〉, S

[2]
s.f.(0,0)=

e2

M
κT . (6.13)

The∆-resonance contribution becomes rather noticeable above 60 MeV, and it diminishes
the energy dependence introduced by the pion exchange. As the result, the energy
dependence of the seagull amplitudeS[2](Eγ ,0) gives only a 2% increase (in the absence
of the polarizability contribution from the free nucleon) in the differential cross section of
γ d scattering at forward angle andEγ = 100 MeV.

In the bottom panels of Fig. 10 we show the spin-averaged and spin-flip two-body
seagull amplitudesS[2] in the case of backward scattering. They are defined by equations
like (6.12) and (6.13), in which2γ = 0 is replaced by2γ = 180◦ and the helicity of the
final photon is inverted. We see that the energy dependence of the spin-flip amplitude is
rather steep in this case. It increases the differential cross of deuteron Compton scattering
at 100 MeV by 5% (again, in the absence of the free-nucleon polarizabilities).

In general, we have found that the effect of the∆ excitation onto the seagull amplitude
S[2]π is not large. It does not exceed−2% in the differential cross section ofγ d scattering,
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Fig. 11. Contributions of different parts of the amplitude to the differential cross section (CM) ofγ d

scattering at 50, 70, and 100 MeV. The contribution of the resonance amplitudeRno rescatalone is
shown in dotted lines. Successive additions of the one-body seagullS[1], the two-body seagullS[2],
and the rescattering amplitudeRrescat give the dashed, dash-dotted and solid lines, respectively.
Nucleon polarizabilities are not included intoS[1]. Data are from Ref. [104].

dσ/dΩ , at all considered energies. The two-body contribution of the∆-isobar to the
resonance amplitudeR was found to be not large too. For example, it changes the
differential cross section at 100 MeV by+3% at forward angle and by−0.6% at backward
angle. At this point we disagree with the results of Ref. [42], in which it was found that the
effect of the∆-excitation onto the resonance amplitude at 100 MeV is negligible at small
angles and very large at2γ > 90◦ giving a+15% increase indσ/dΩ .

6.3. Model dependence

Contributions of the different componentsRno rescat, S[1], S[2] andRrescatof the total
amplitudeT to the differential cross section at a few selected energies are shown in
Fig. 11.16 It is seen that the effects of the resonance amplitude, the one-body seagull
as well as the two-body seagull are of similar scale, though the total effect of the seagulls
is more than 70% in the energy region under consideration. At the same time rescattering
has a modest impact on the differential cross section. Our results confirm findings of other
approaches [43–45] that the rescattering decreases the forward differential cross section
and that this decrease is between 7% to 12% in the energy region of 50 to 100 MeV.

There was some discrepancy in the previous work concerning the role ofRrescat

at backward angles. Weyrauch [43] found that the rescattering does not contribute at
backward angles at all, whereas in the later calculations [44,45] a visible increase in
dσ/dΩ was claimed. Our results agree with the latter conclusions and suggest that the
effect ofRrescat(Eγ ,180◦) ranges between+7% at 50 MeV to+3% at 100 MeV. Since
an accurate calculation ofRrescatis a difficult problem for our computational scheme, this
finding of a relatively small effect ofRrescat at energies and angles where experimental
data are available provides some justification to our approximate use of a separable
potential [93] for a computation of the off-shellT -matrix of NN rescattering.

16 Since the seagull and resonance contributions are not gauge-invariant separately, we remind that we use the
gauge (2.16) to calculateR andS.
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An instructive feature of the calculation is that the spin-orbit (s.o.) contributions to the
electromagnetic current and seagull,j [1]s.o. andS[1]s.o., which are relativistic corrections
of order 1/M2 in Eqs. (3.5) and (3.6), are rather essential. Previously, it was found [101]
that the spin-orbit current is responsible for the long-standing discrepancy between the
theory and data on deuteron photodisintegration at forward and backward angles. In the
reaction of Compton scattering, the spin-orbit interaction is important not only at extreme
angles, and this importance increases with the photon energy. Eitherj [1]s.o. or S[1]s.o. leads
to an approximately equal decrease in the differential cross section at the forward angle,
and the total effect of the spin-orbit interaction ondσ(Eγ ,0)/dΩ is −4% at 50 MeV
and−15% at 100 MeV. A somewhat different situation happens at the backward angle.
The spin-orbit currentj [1]s.o. still decreases the differential cross section, but the spin-orbit
seagullS[1]s.o. makes a bigger increase. The net effect of the spin-orbit interaction at 180◦
is +4% at 50 MeV and+8% at 100 MeV. In the central angular region of2γ ' 90◦, the
spin-orbit interaction has a little impact ondσ/dΩ ranging between+0.8% at 50 MeV
and−0.2% at 100 MeV.

Staying within the Bonn-potential picture, we have checked how the differential cross
section depends on a specific choice of the potential’s parameters. The OBEPR and
OBEPR(A) versions of the Bonn potential givedσ/dΩ which are different at most by
1% in the energy range of 50–100 MeV. A bigger difference is found for the OBEPR
and OBEPR(B) versions, though it decreases with the photon energy. For example, the
OBEPR(B) potential givesdσ/dΩ which is bigger by 5% (7%) at 50 MeV and 0.5%
(5%) at 100 MeV for forward (backward) angles, respectively. The main reason for such
a difference comes from a very large value for the cut-off parameterΛπ = 2 GeV used in
theπ -exchange potential of the OBEPR(B) version, whereasΛπ = 1.3 GeV for OBEPR.
Respectively, the seagull’s parametersκ andκT are bigger for OBEPR(B) too.17

We may note that the OBEPR(B) version of the Bonn potential does not provide a
satisfactory description of observables in deuteron photodisintegration [51] and thus it is
not fully realistic. Therefore, one may conjecture that the sensitivity of the results onγ d

scattering would not be so noticeable if one restricts oneself to “realistic” potentials only.
In this respect it is worth mentioning that the use of different momentum-space versions
of the Bonn OBE potentials was found [44] to yield version-independent results forγ d

scattering within 1%.
The present results are in a qualitative agreement with our previous calculation [45]

done in the framework of a “minimal model”, in which MECs and MESs are evaluated
through the minimal substitutionp→ p − eA in the (Paris) NN potential. As they were
published, those older results did not include the spin-orbit interaction. After taking into
accountj [1]s.o. and S[1]s.o. the predictions of the minimal model become closer to the
results of the present work, especially as for the shape of the angular dependence. Still, the
minimal model gives a lower differential cross section: by 6% at 70 MeV and by 11% at

17 As a word of precaution we have to remind that we always calculate the rescattering contributionRrescatusing
a fixed T -matrix obtained with the (separable-approximated) Paris potential. Therefore, the specific numbers
indicated in the above discussion do not show the full change in the theoretical predictions when the potential is
changed, although we assume that they are qualitatively correct.
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Fig. 12. Differential cross sections (CM) ofγ d scattering. Dotted lines: Weyrauch and Arenhövel
[42]. Dashed lines: Weyrauch [43]. Dash-dotted lines: Wilbois et al. [44]. Solid lines: the present
work. Nucleon polarizabilities are turned off. Data are from Ref. [104].

Fig. 13. Differential cross sections (CM) ofγ d scattering. Dashed lines: Karakowski and Miller [46].
Dotted lines: Beane et al. [49]. Dash-dotted lines: Chen et al. [47]. Solid lines: the present work.
Nucleon polarizabilities are included, andᾱN − β̄N = 9 is used for drawing the solid curves. Data
are from Ref. [104] (solid circles) and Refs. [107,108] (open circles).

100 MeV. Such a difference can be traced in part to a weaker energy dependence of the
seagull amplitude found in the minimal model and to the absence of the two-body∆-isobar
effects in that model.

A comparison of the present predictions with the results of other calculations of 80’s
– mid 90’s [42–44] is shown in Fig. 12. There is a reasonable agreement between all the
predictions at low energies like 50 MeV, maybe with the except for those of Ref. [42].
When the energy increases up to 100 MeV, we predict a bigger angular variation ofdσ/dΩ

that other works do. In fact, the discrepancy between all the results of different authors is
dramatically large at 100 MeV. Moreover, since the spin-orbit interaction was not taken into
account in Refs. [42–44] and since the spin-orbit effects decrease the forward cross section
by 15% at 100 MeV, the genuine disagreement of other components of the scattering
amplitude with those of Ref. [44] is even more serious than Fig. 12 suggests.

It is interesting that the very low differential cross section obtained by Wilbois et al. [44]
at 100 MeV has found a support from a recent work of Karakowski and Miller (KM) [46],
see Fig. 13. Below we mention a couple of possible reasons why the KM model disagrees
with our model and shows a wrong behavior at high energiesEγ ∼ 100 MeV.18 First,

18 We are indebted to Prof. G.A. Miller for useful comments made on this point.
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we have rather different effects of the spin-orbit interaction. In Ref. [46], this interaction
was taken into account partly, i.e., only through the electromagnetic seagull, not through
the electromagnetic current. However, it gave a much bigger decrease in the differential
cross section at forward angles than that we found (cf. Fig. 12 in Ref. [46]). The second
reason, perhaps less important numerically, might be that there is a mismatch between the
electromagnetic and strong-interaction parts of the HamiltonianHKM of the KM model
which destroys the gauge invariance and actually signals that some electromagnetic charges
or currents in the system are missing in the theoretical formalism. The mentioned mismatch
is that the electromagnetic two-body part ofHKM includes only the point-like pion-
exchange piece, whereas the wave function of the deuteron is constructed using a more
complicated (and more realistic) Bonn potential.19 The violation of the gauge invariance
in the KM model did not lead to visible problems at low photon momentakr � 1 owing
to the use of the Siegert transformation which ensured automatically the fulfillment of the
low-energy theorem (2.15). However, whenkr becomes large (this is the case for energies
Eγ ∼ 100 MeV), the Siegert transformation does not help, and the missing charges and/or
currents can become important.

There is a simple way to verify the theoretical calculations in the particular case of
2γ = 0 and to see that the predictions of Ref. [46] at high energies are invalid. Using the
Gell-Mann–Goldberger–Thirring dispersion relation jointly with the optical theorem (cf.
Eq. (6.4)) for the spin-averaged amplitudeTs.a., we write

ReTs.a.(ω,0)=−Z
2e2

AM
+ 2ω2

π
P

∞∫
0

σtot(ω
′)

ω′2−ω2
dω′, (6.14)

whereσtot is the total photoabsorption cross section. Keeping in mind that the total cross
section of meson production off the deuteron is dominated by meson production off quasi-
free nucleons, we see that this part of the photoabsorption cross section is responsible for
the component of theγ d scattering amplitude which is related with the polarizabilities of
free nucleons (up to relatively small effects due to medium modifications of these polar-
izabilities). Therefore, subtracting the meson-production part of the photoabsorption cross
section and keeping in Eq. (6.14)nonmesonic, or photodisintegration part of the cross
section, we can approximately identify the resulting r.h.s. of Eq. (6.14) with theγ d scat-
tering amplitude, in which the internal (mesonic) structure of the nucleon is disregarded.
In other words, using the deuteron photodisintegration cross sectionσ

γd→pn
tot instead of

σtot in Eq. (6.14), we should obtain theγ d scattering amplitude with point-like nucleons
having zero polarizability. See Ref. [6] for a more detailed discussion of these steps.

We have evaluated the integral in Eq. (6.14) at energiesω . 100 MeV using: (i) the
effective-range parameterization ofσγd→pntot (ω′) at energiesω′ below 20 MeV (see
Ref. [105], Eq. (2.18)) which gives an accurate description of experimental data at low
energies, and (ii) a phenomenological fit [106] to available experimental data between 20

19 Actually, the procedure of Ref. [46] is even more complicated in this respect, because one more potential
(Reid93) is used in another part of their computation, when the rescattering correction is found. To be honest, we
have to say that we also do a similar mixture in order to evaluateRrescat(see Section 5).
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Fig. 14. The spin-averaged amplitude of forwardγ d-scattering. Solid line: the r.h.s. of Eq. (6.14).
Dashed line: results of the present work based on the Bonn potential. Meson photoproduction and
nucleon polarizabilities are disregarded.

and 440 MeV. At higherω′, the photodisintegration cross section is small and can be safely
neglected in the integral. The result of such an evaluation of Eq. (6.14) is shown in Fig. 14
by the solid curve, together with our predictions (dashed line) based on the Bonn-potential
picture, in which the nucleon polarizabilities are disregarded. Generally, we find very good
agreement between the two curves. Some disagreement of about 6% at very low energies
appears due to an approximate way of finding the rescattering amplitudeRrescat, as it was
already mentioned in Section 5. At energies above 10 MeV, the rescattering amplitude
is less important, and the agreement between the two calculations improves. It is better
that 3% even at 100 MeV. It is needless to say that the Bonn-potential picture nicely
reproduces the experimental data on the total cross sectionσ

γd→pn
tot at all energies below

pion threshold as well as the differential cross section of deuteron photodisintegration and
polarization observables [51].

Now let us compare our predictions with those obtained within two different flavors of
effective field theory (EFT) for few-nucleon systems [47,49] (a general review of the EFT
approach to nuclear problems can be found in Ref. [109]). At “high” energiesEγ ∼ 70–
100 MeV, we have a qualitative agreement with the results of Beane et al. [49], who used
the so-called Weinberg formulation of the nuclear EFT. See Fig. 13 for a comparison. In
part, a proximity of our and Beane et al. predictions is caused by their use of a realistic wave
function to evaluate matrix elements of the ChPT kernel, the latter denoting the amplitude
of γ NN→ γ NN taken to orderO(Q3) in the chiral perturbation theory expansion. It
was actually the wave function of the Bonn potential.20 Furthermore, the dominating part
of the two-body seagull operator is the same in our two approaches. It comes from the
retarded pion exchange. Despite the Bonn-potential picture uses form factors in theπ NN

20 The optional use of the Nijmegen-potential wave function (see Ref. [49, Fig. 15]) leads to bigger deviations
from the dispersion predictions and from the Urbana data [104]. It was claimed in Ref. [49] that any wave function
of the deuteron with the correct binding energy, thus including for instanceΨ(p) given by Eq. (6.1), could also be
used within the considered orderO(Q3) of the power expansion. Being valid theoretically, this makes, however,
a big numerical difference!
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vertices and additional heavier mesons (to make improvements to the potential at small
distances), the effects of the form factor and the heavy mesons onto the seagull amplitude
are reduced to some changes ofκ which almost cancel each other. Specifically, we have
foundκ = 0.48− 0.04+ 0.03, where the three numbers are the contribution of the pure
pion exchange, the contribution from the fictitiousΛ particle simulating theπ NN form
factor (see Section 4), and the contribution ofρ, ω, δ andσ mesons, respectively.

We can notice thatall the contributions counted in Ref. [49] have been taken into account
in our calculation as well. Beyond that, we included other corrections which formally
belong to higher orders inQ in the power counting scheme of the EFT but are large
numerically. An instructive example is the amplitudeRno rescatgiven by Eq. (5.5), in which
each of the amplitudes of theγ d→ pn transitions is dominated, at high energies, by the
pion-exchange currentj [2]π , as shown in Fig. 9. This rather large contribution formally
appears only in orderO(Q5) of the power counting scheme of Ref. [49].

A resemblance of the two predictions seems to be lost at lower energies, where the
scattering amplitude of Beane et al. begins to deviate from the correct value fixed, for
instance, by the dispersion relation (6.14) at the forward angle. Such a failure is not
a surprise and it was anticipated in Ref. [49] as a result of contributions from the NN
intermediate states which break down the used power counting at low energies.

It is worth mentioning that the evaluation of matrix elements of the ChPT kernel between
phenomenological(Bonn or Nijmegen) wave functions, which are not consistent with the
one-pion-exchange dynamics of the NN interaction incorporated into the ChPT kernel,
automatically means the absence of the gauge invariance in the scheme of Ref. [49]. This
itself is a sufficient reason for a failure of such a theory at very low energies where the
gauge invariance is crucial.

In view of close magnitudes ofκ arising in our approach and in that of Ref. [49], we
canconjecturethat the main difference between the two predictions at energies of about
100 MeV is related with our taking into account the∆-resonance excitation (both in one-
body and two-body operators) and with our taking into account the contributionRno rescat

(of the correct magnitude) and the contributionRrescat.
The problem with the gauge invariance and with the region of very low energies does not

exist in the version of EFT used by Chen et al. [47]. Their work is based on the so-called
Kaplan–Savage–Wise (KSW) regularization which successfully resolves the problem of a
poor power-series convergence in the case of larges-wave NN-scattering lengths [110].
NN rescattering contributions are accurately taken into account in that approach. However,
even being quite accurate at low energies, this approach becomes inapplicable when the
momenta of nucleons in the rescattering diagrams exceed the range of convergence of
power series which is aboutΛNN = 16πM/g2

πNN ' 300 MeV. This makes predictions of
Ref. [47] not well controlled at energies&70–90 MeV. Therefore, there is no surprise that
these predictions at 70 MeV lie visibly lower than our predictions (and those of Beane et
al. [49]), including the2γ = 0 point, where the dispersion relation (6.14) strongly favors
our calculation. It is worth mentioning that neither∆-isobar excitation nor the spin-orbit
current and seagull are taken into account in Ref. [47] since these pieces appear only in
higher orders of the used expansion.
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6.4. Determination of the nucleon polarizabilities

Considering the nucleon dipole polarizabilitiesᾱN andβ̄N in the electromagnetic seagull
operator (3.6) as free parameters, we can check the sensitivity of the differential cross
sectiondσ/dΩ with respect to variation of these parameters. Our results are shown in
Fig. 15 together with a few experimental data available from Urbana (Eγ = 49 and
69 MeV) [104] and Saskatoon (Eγ = 94 MeV) [107,108]. We do not show how the
differential cross section depends on the sum of the electric and magnetic polarizability,
because this sum is reasonably-well fixed by the Baldin sum rule, Eq. (3.12). As for the
difference ofᾱN andβ̄N which is not well-known theoretically, it can be determined from
data at large scattering angle.

Of course, the highest sensitivity is observed at the highest photon energy. Nevertheless,
we believe that data at medium energies like 70 MeV are also quite useful, because
theoretical uncertainties in our computation related, for example, with omitted relativistic
corrections or with omitted dispersion effects due to two-pion exchanges are expected to
be smaller at lower energies.

Dotted lines in Fig. 15 illustrate the fact that the higher-order polarizabilities (3.13) are
in no way negligible when the nucleon dipole polarizabilities are determined fromγ d

scattering at energies&70 MeV. This feature was paid attention to also in Ref. [49], in
which the higher-order contributions appeared as an intrinsic part of the one-pion-loop
diagrams of the ChPT kernel. Since, however, we use the higher-order polarizabilities
which are given by dispersion relations [25,67,72,74] and which are very different from
those suggested by the one-pion-loop mechanism (in part, due to the∆-contribution, see
Ref. [25]), we predict a much bigger effect at backward angles.

A straightforward two-parameter fit of the Urbana data [104] givesᾱN = 14.5± 2.7 and
β̄N = 6.6± 2.7, whereas a similar fit of the Saskatoon data [107,108] gives a lower value
of the electric polarizability:̄αN = 8.4± 1.8 andβ̄N = 6.2± 1.8. Making a combined fit
of all the data, we obtain

Fig. 15. Dependence of the differential cross section (CM) ofγ d scattering on the nucleon-averaged
dipole polarizabilitiesᾱN and β̄N. Dashed lines: all the polarizabilities (including those of higher
order) are turned off. Dotted lines: only higher-order polarizabilities, Eq. (3.13), are included.
Dashed-double-dotted, solid, and dashed-dotted lines:ᾱN − β̄N = 6, 9 and 12, respectively,
ᾱN+ β̄N = 14.6 is fixed, and the higher-order polarizabilities are included. Data are from Ref. [104]
(solid circles) and Refs. [107,108] (open circles).
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Fig. 16. Left panel: contributions of different parts of the Compton scattering amplitude to the beam
asymmetry at 100 MeV. Notation of curves is as in Fig. 11. Right panel: dependence of the beam
asymmetry on the nucleon-averaged dipole polarizabilitiesᾱN and β̄N. Notation of curves is as in
Fig. 15.

ᾱN + β̄N = 17.1± 1.6, (6.15)

what is in agreement with the theoretical expectation (3.12), and

ᾱN − β̄N = 4.0± 1.5, (6.16)

though with a poorχ2/Nd.o.f. = 21/9. Systematic uncertainties of the experimental data
are included into the obtained estimates (6.15) and (6.16). However, it is not so easy to
estimate uncertainties introduced by the theoretical model. Certainly, they are not less than
the experimental uncertainties.

Taken as they are, these numbers, together with the experimental data on the
polarizabilities of the proton (1.2) can be considered as an indication that the electric
polarizability of the neutron is̄αn= 9± 3, and the neutron magnetic polarizability isβ̄n=
11± 3. While the obtained sum̄αn+ β̄n = 20± 3 reasonably agrees with the theoretical
estimate (3.11b), the obtained differenceᾱn − β̄n = −2± 3 is rather far from both the
similar difference in the proton case found experimentally,ᾱp− β̄p= 10± 2 [12,16], and
from theoretical estimates based on dispersion relations which predict roughlyᾱn− β̄n'
ᾱp − β̄p (see, e.g., Refs. [1,3,73]). It is clear that a further experimental and theoretical
work is needed to reduce the uncertainties. New data can appear from Lund [111].

Among other observables ofγ d scattering which are sensitive to the nucleon polar-
izabilities too, we briefly discuss the beam asymmetryΣ , Eq. (5.10). In Fig. 16 we show
how different components of the Compton scattering amplitude affectΣ (this is helpful for
imagining a possible scale of model uncertainties) and howΣ is sensitive to the nucleon
polarizabilities. One can notice a strong dominance of the one-body seagull amplitude,
whereas the role of the two-body seagull contribution is smaller than that in the case of the
differential cross section. The role of NN rescattering is again small.

The spin-orbit interaction essentially affectsΣ and gives a 10% increase at central
angles. It mainly comes through the one-body seagull amplitudeS[1]. The contribution
of the∆ excitation to the two-body seagull amplitudeS[2]π changes the beam asymmetry
by less than 1%, but the∆ contribution into the resonance amplitudeR is rather visible,
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reducingΣ by 6% at 100 MeV. Pion-retardation effects have only a tiny impact onΣ . The
use of the potential OBEPR(B) instead of OBEPR has a big effect and reducesΣ by 14%
at 100 MeV.

It looks like experiments with the linearly-polarized photon beam can also be useful for
measuring the nucleon polarizabilities, provided the accuracy of measurements is better
than∼5–10%.

We conclude saying that the reaction of deuteron Compton scattering at energies of
about 50–100 MeV has a great potential for a determination of the electromagnetic
polarizabilities of the neutron. Currently, the available theoretical models show a big
divergence in their results, in part because they do not take into account all important
contributions. So, a further theoretical work is needed to improve the accuracy of the
models before any firm conclusions could be inferred about the values ofᾱN and β̄N.
Better experimental data are also needed to this aim.
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Appendix A. Electromagnetic seagulls from heavy mesons of the OBE potential

In this appendix we give explicit formulas for the seagullsSαij produced by the meson
exchangesα = η, σ , δ, ω andρ of the Bonn potential (OBEPR). All of them are obtained
through a direct evaluation of the diagrams shown in Fig. 1c. The electromagnetic effective
meson–nucleon verticesγαNN andγ γαNN in these diagrams arise from the relativistic
boson–nucleon effective Lagrangian of Refs. [78,79], in which a nonrelativistic reduction
is done and terms up to orderO(M−2) are only retained. Such a procedure is consistent
with the whole construction of the OBEPR, because this potential itself is built through
the truncation of the relativistic Feynman diagrams of the one-boson exchanges to order
O(M−2) (see Ref. [79], Appendix A.3).

Technically, the nonrelativistic reduction can be conveniently performed [86] by
considering appropriate relativistic Feynman diagrams (see Fig. 17) and keeping only

(a) (b)

Fig. 17. Effective contact meson–nucleon verticesγ αNN (a) andγ γ αNN (b) arising from the
antinucleon degrees of freedom. Thick lines denote the negative-energy partP− of the nucleon
propagator, Eq. (A1).
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the negative-energy partP− of the nucleon propagators. To leading order in 1/M, it is
sufficient to takeP− in the static limit, i.e.,

P− =− 1

2M

(
0 0
0 1

)
. (A1)

It is worth noticing that the contact vertexγαNN in Fig. 17 appears only in the case of
α = ρ, being caused by the tensor coupling of the chargedρ-meson to the nucleon. In the
formalism of the pseudo-scalarπ NN coupling used in Refs. [78,79], the contact vertex
γπ NN is absent.

We use the same notation as in Section 4. In particular, the momentaq1, q2, K1 andK2

are defined by Eqs. (4.8) and (4.12). We introduce also the vectors

P1= p1+ p′1, P2= p2+ p′2. (A2)

The functionsGα(q), G1α(q1,q2), G2α(q1,q2,K ), andDα(q1,q2,K1,K2) used below
are defined as in Section 4 with the evident replacementπ → α in all massesmα and
cutoff parametersΛα . The constantsκα denote the ratios of the tensor and vector coupling
constants for theωNN andρNN vertices,κα = fα/gα .

Evaluating the diagrams in Figs. 1c and 17, we obtain the following results.
• Isoscalar exchanges:

ε′∗i εj S
η
ij

(−k′,k;p′1,p′2;p1,p2
)= 0, (A3)

ε′∗i εj Sσij
(−k′,k;p′1,p′2;p1,p2

)=−ε · ε′∗ e2g2
σ

2M2

[
Z1Gσ (q2)+ (1↔ 2)

]
, (A4)

ε′∗i εj Sωij
(−k′,k;p′1,p′2;p1,p2

)
=−ε · ε′∗ e

2g2
ω

2M2

[
Z1Gω(q2)− 2Z1Z2Gω(K1)+ (1↔ 2)

]
. (A5)

Writing the last equation, we have used thatκω = 0 for the Bonn-potential.
• Isovector exchanges:

ε′∗i εj Sδij
(−k′,k;p′1,p′2;p1,p2

)
=−ε · ε′∗ e

2g2
δ

2M2

[
Z1τ

z
2Gδ(q2)+ (1↔ 2)

]+ e2g2
δ

4M2

{(
q2 · ε′∗G1δ(q2,K1)

× [T12(q1 · ε+ iσ1× P1 · ε)+ i(τ1× τ2)
z(P1 · ε+ iσ1× q1 · ε)

]
+ (1↔ 2)

)+ (ε↔ ε′∗,K1↔−K2)
}− e2g2

δ T12Dδ(q1,q2,K1,K2)

×
[
1− P2

1+P2
2− q2

1− q2
2

16M2
− i σ 1× q1 · P1+ σ 2× q2 ·P2

8M2

]
, (A6)

ε′∗i εj S
ρ
ij

(−k′,k;p′1,p′2;p1,p2
)

=−ε · ε′∗ e
2g2
ρ

2M2

[
(Z1τ

z
2 − κρT12)Gρ(q2)+ (1↔ 2)

]
+ e

2g2
ρ

4M2

{
Gρ(K1)

[
ε · ε′∗(T12− 4Z1Z2)+ (1+ κρ)2T12σ 1× ε · σ 2× ε′∗

− (1+ κρ)(τ1× τ2)
z (σ 1+ σ 2) · ε′∗ × ε

]+ (1↔ 2)
}
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+ e
2g2
ρ

4M2

[(
q2 ·ε′∗G1ρ(q2,K1)

{
T12
[
(1+4κρ)q1 ·ε+ i(1+2κρ)σ 1×P1 ·ε

− 2i(1+ κρ)σ 1×P2 · ε− 2(1+ κρ)2σ 1× ε · σ 2× q2
]+ i(τ1× τ2)

z

× [(P1− 2P2) · ε+ i(1+ 2κρ)σ 1× q1 · ε− 2i(1+ κρ)σ 2× q2 · ε
]}

+ (1↔ 2)
)
+ (ε↔ ε′∗,K1↔−K2)

]
+ e2g2

δ T12Dρ(q1,q2,K1,K2)

[
1+ P2

1+P2
2− 4P1 ·P2

16M2

+ (1− 4κρ)
q2

1+ q2
2

16M2 + i(1+ 2κρ)
σ 1× q1 ·P1+ σ 2× q2 · P2

8M2

− i(1+ κρ) σ 1× q1 ·P2+ σ 2× q2 ·P1

4M2

+ (1+ κρ)2 σ 1× q1 · σ 2× q2

4M2

]
. (A7)

Writing Eqs. (A6) and (A7), we used the radiation gauge (2.16).

With the help of Eqs. (4.9) and (4.16), one can verify that thus constructed seagull
operatorsSαij satisfy the equation (4.17), provided the electromagnetic currentsjα are taken

as obtained [51] from the same boson exchanges to orderO(M−2).

Numerical values of the massesmα , the couplingsgα (as well asκα for the vector
mesons), and the cutoff parametersΛα for different bosons are taken exactly the same

as for the Bonn potential (OBEPR) itself [78,79]. The only exception concerns theσ -
exchange. The matter is that the Bonn parameterization of theσ -exchange suggests to use

a different massmσ and the couplinggσ for different NN channels with the total isospin
I = 0 or I = 1. We found this feature inconvenient for building electromagnetic operators

which mix the isospin. Since we noticed no visible distinction between our predictions
usingσ -MEC andσ -MES with either of the two sets of (mσ , gσ ), we took for the sake of

simplicity theσ -meson parameters proposed by the Bonn group for theI = 0 channel.

As a final comment we have to mention that, strictly speaking, the nonrelativistic
reduction of the Feynman diagrams to orderO(M−2) considered as a method of a

determination of the OBE potentialsV α , the OBE electromagnetic currentsjαµ , and the
OBE electromagnetic seagullsSαµν may need a further refinement. The matter is that the

operators obtained in this way are manifestly frame-dependent. Specifically, they explicitly
depend on the individual momenta of the nucleons,P1 andP2, rather than on the relative

variableP1−P2 (see, e.g., Eqs. (A6), (A7) and also Ref. [51]). This is not what is expected
for potentials, MEC, and MES in the nonrelativistic framework.

It is possible to propose a modification of the diagrammatic representation of the boson
exchanges which leads to Galileo-invariant results and to some changes in the above

equations for MEC and MES [112]. We checked, however, that such a modification has
only a minor numerical effect and can be neglected in the present context.
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