CHERENKOV RADIATION in ELECTRODYNAMIC STRUCTURES and its APPLICATIONS

A.N. Lebedev, LPI

- Long-term wave-particle interaction (synchronism).
- Reversibility of V.-Ch. effect (phase relations)
- Oscillator in the Ch. domain. Anomalous Doppler effect.
- Structures of interest:
 - Magnetized plasma
 - Periodic waveguides and lattices
 - Smith-Purcell effect and resonant transition radiation
 - Ultralight bunches in regular waveguides
- Coherent Ch. radiation. Limits of coherency
- Induced Ch. radiation and UHF sources

$\Delta \mathcal{E} \gg \hbar \omega - ext{classical radiation} \ l \gg \lambda - ext{long-term interaction}$

necessary and sufficient:

$$\omega/k_{\rm Z} = \beta c; \quad \vec{E}\vec{\beta} \neq 0$$

In free space $k_{\rm Z} = \frac{\omega}{c} \sqrt{\epsilon} \cos \theta$ and

$$\cos \theta = \frac{1}{\beta \sqrt{\epsilon(\omega)}}$$

For the n-th E-mode in a waveguide

$$\beta_n = \beta$$

CHERENKOV RADIATION IN A COHERENT EM WAVE

ULTRALIGHT OSCILLATOR DOPPLER EFFECT

The wave outstrips (lags behind) the particle by λ per osc. period

$$\omega - k\beta c = \pm \Omega \qquad k = \omega/\beta_{\rm p}c$$

Conservation laws yield the change in internal osc. energy:

$$\Delta W = \Delta E \left(1 - \beta / \beta_{\rm p} \right)$$

Radiation in Cherenkov domain excites oscillations at longitudinal retardation expence

MAGNETIZED PLASMA

PERIODIC STRUCTURE

CORRUGATED WAVEGUIDE

SMITH-PURCELL EFFECT (Cherenkov radiation of a slow surface wave)

o 2 o o

1 - particles; 2 - images

RESONANT TRANSITION RADIATION

The proper cavity frequency ω_c and the time of light τ are matched for $\omega_c \tau = \pi/2$. For smaller ω_c the wavelength is larger to keep the synchronism.

The group velocity is zero.

COHERENCY $P_{\text{coh}}(\omega) = CP(\omega)$

FREE SPACE:

synchronism defines $\theta(\omega)$, then coherency define θ and ω

WAVEGUIDE:

synchronism defines a set of ω_n , then coherency is compatible for a particular $L_{\rm b}$ only (if at all)

NOT ANY TRAIN OF PARTICLES RADIATES COHERENTLY

LIMITS OF COHERENCY

 $P_N=N^2P_1$ requires $\lambda\gg a$ and $\omega_{\rm p}a\ll c$ Can be fulfilled for $\lambda\gg a\gg Nr_0$ only. A "pointlike" bunch \neq an elementary particle because of internal degrees of freedom.

For a train of particles (bunches) with uncertaintity in position δ

Beeng averaged over a finite frequency interval the coherency factor $< N^2$.

INDUCED RADIATION IN CLASSICAL APPROACH

kinetic equation for photons:

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \int w_{\mathbf{k}} \left\{ f(E) \left(1 + n_{\mathbf{k}} \right) - f \left(E - \hbar \omega \right) n_{\mathbf{k}} \right\} \mathbf{d}E$$

radiation absorption

For $\hbar \to 0$:

$$oxed{rac{\partial W_{
m k}}{\partial t} = -W_{
m k} rac{\partial P_{
m sp}}{\partial E}}$$

The difference between absorption and radiation due to the energy dependence of P_{SD}

PROVIDES INDUCED RADIATION.

A SHARP ENERGY DEPENDENT LINE OF SPONTANEOUS RADIATION IS REQUIRED.

INDUCED RADIATION/ABSORPTION LINES

RADIATION SPECTRUM

The linewidth of sp. radiation is determined, at least, by the limited interaction length L. The preferential mode with $\mu=2.6$ grows exponentially causing narrowing of the spectral line (lasing).

PHASING

ABS. PHASES RAD. PHASES **SATURATION**

Due to radiation reaction ultralight particles bunch in the decelerating field providing coherent radiation. This process comes to saturation

BEAM - PLASMA INTERACTION

