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and valid for all energies(Øverbø et al., 1968). Unfortunately, this ex-
pression is numerically treatable only forω . 5MeV.



History
Born approximation(Bethe and Heitler, 1934)
Exact inZα, high-energy asymptotics(Bethe and Maximon, 1954; Davies
et al., 1954; Olsen et al., 1957)
It has a reasonable accuracy forω & 100MeV

Coulomb corrections (CC) are defined as the difference between the exact
result and Born term. For heavy atomsZα ∼ 1 and CC are not small.

Formal expression for the spectrum of the processγ → eē exact inZα
and valid for all energies(Øverbø et al., 1968). Unfortunately, this ex-
pression is numerically treatable only forω . 5MeV.
Extrapolating formula ofØverbø(1977).
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Small angles and large angular momenta⇒ the quasiclassical approxima-
tion is applicable.
Within our accuracy one can use the following expression forG

G(r2, r1|ε) =
[
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]
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whereD(0) is the quasiclassical Green function of the Klein-Gordon
equation with the first correction.
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Within our accuracy one can use the following expression forG

G(r2, r1|ε) =
[
γ0(ε− V (r2))− γ · p2 +m
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×
[
1 +

α · (p1 + p2)

2ε

]
D(0)(r2, r1|ε) , p1,2 = −i∇1,2 ,

whereD(0) is the quasiclassical Green function of the Klein-Gordon
equation with the first correction.
First corrections can be represented as a sum of them/ε correction and
the correction due to screening (small in1/mrscr).



Correction in m/ε (screening is neglected)
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− 4σ0
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,

y = ω/ε , σ0 = α(Zα)2/m2 ,

f (Zα) = Re[ψ(1 + iZα) + C] , g(Zα) = Zα
Γ(1− iZα)Γ(1/2 + iZα)

Γ(1 + iZα)Γ(1/2− iZα)



Spectrum of CC with O(m/ε)-correction
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Screening correction (to leading term in
m/ε)
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• O(m/ε)– correction can not be obtained this way

dσγ→eē
CC

dx
= −4σ0

[(
1− 4

3
x(1− x)

)
f (Zα)

−π
3(1− 2x)m
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(
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2
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]
The correction is an odd function inx → 1 − x (andZα → −Zα),

therefore does not allow to obtain the correction to the total cross section.
The correction to the total cross section comes from the region where one
of the particle is not ultrarelativistic⇒ quasiclassical approximation is
inapplicable.



Delbrück scattering amplitude.

1

ω
ImM γ→γ = σγ→eē+σγ→e(bound)ē .
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The integral inM (1)
CC is logarithmically divergent. Taking the integral

fromm/ω to 1−m/ω, we find within logarithmic accuracy that ImM (1)
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vanishes and
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.



Dispersion relation

ReM γ→γ(ω) =
2

π
ω2 P

∫ ∞

0

ImM γ→γ(ω′) dω′

ω′(ω′2 − ω2)
.

Large logarithm in ReM γ→γ(1)
CC could appear only if

ImM
γ→γ(1)
CC =

α(Zα)2π4 Im g(Zα)

2m
,

atω � m.
The cross sectionσγ→e(bound)ē has the form(Milstein and Strakhovenko, 1993)

σγ→e(bound)ē = 4πσ0(Zα)3f1(Zα)
m

ω

Using these results we obtain

σ
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CC = σ0
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π4

2
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]
m

ω
.



Estimation of the next correction
O(m/ω)-correction has large numerical coefficient (∼ 20 for heavy
atoms). How large is the next correction,O(m2/ω2)?
Using the arguments similar to those presented byDavies et al.(1954) the
following ansatz forσγ→eē(2)

CC has been suggested in our recent paperLee
et al.(2003)

σ
γ→eē(2)
CC = σ0 [b ln(ω/2m) + c ]

(m
ω

)2
, σ0 = α(Zα)2/m2

whereb and c are some functions ofZα. It was shown inLee et al.
(2003) that experimental data forσcoh are well described if one setsb =
3.78(ω/m)σ−1

0 σ
(1)
C , c = 0.



Comparison with the experiment

ω (MeV )

Σ

Bi

5 10 15 20 25 30
0

5

10

15

20

25

ω (MeV )

Σ

Ta

5 10 15 20 25 30
0

5

10

15

20

ω (MeV )

Σ

Pb

20 40 60 80
0

5

10

15

20

25

The values ofΣ extracted from the ex-
perimental data forBi, Ta, Pb together
with the fit ath + (m/ω)b ln(ω/2m)
(dashed curve). The solid line repre-
sents the asymptoticsΣ = ath,

Σ =
ω

m
σ−1

0 (σ − σB − σ
(0)
CC
− σ

(scr)
CC

) ,



Comparison with the experiment

ω (MeV)

S

5 10 15 20 25 30 35

-0.2

0

0.2

0.4

0.6

0.8

1

ω (MeV)

S
0 20 40 60 80

-0.2

0

0.2

0.4

0.6

0.8

Theω-dependence ofS = (σcoh − σB)/σ
(0)

CC
for

Bi. Solid curve: our result; dashed curve: the
result ofØverbø(1977); experimental data from
(Sherman et al., 1980).

Same forPb.



CC to differential cross section of pair pro-
duction and bremsstrahlung in the Coulomb
field

⇑
∆2

min

∆2ξη

Olsen(2003)

• CC to pair production cross sec-
tion come from∆ ∼ m

• CC to bremsstrahlung cross sec-
tion come from∆ ∼ ∆min



CC in the presence of screening
• CC to pair production are insensitive to screening atrscr � 1/m



CC in the presence of screening
• CC to pair production are insensitive to screening atrscr � 1/m

• CC to bremsstrahlung at1/∆min � rscr � 1/m?
Screening suppresses the region of small momentum transfer therefore
a naive answer would be that CC vanish under this condition(Bethe and

Maximon, 1954).
However, this can not be true due to Olsen’s final-state integration theorem
(Olsen, 1955).
Another wrong answer would be that CC to differential cross section of
bremsstrahlung are also insensitive to screening(Olsen, 2003).
This is also not true(Lee et al., 2004).



CC to differential cross section of
bremsstrahlung in a screened potential
At ∆ � m the CC to the cross section has the form
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dr exp[−i∆ · r − iχ(ρ)]∇ρV (r) ,
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CC to differential cross section of
bremsstrahlung in a screened potential
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Finite beam size
If the peak of thep-distribution has widthδp�

√
∆minε . m then

ψ(r) = φ(ρ)ψ
(in)
P0

(r) ,

φ(ρ) has a simple physical meaning:|φ(ρ)|2 is the electrons density (2D).

A(∆) = −i
∫
drφ(ρ) exp[−i∆ · r − iχ(ρ)]∇ρV (r) ,

Again, the differential probability crucially depends on the beam shape.

ζ

π
ρ

2 0∆
⊥
d
R
/d

∆
⊥

0 2 4 6 8 10

-80

-60

-40

-20

0

20 φ0(ρ) =
exp[−ρ2/2ρ2

0]√
πρ2

0

,

φ1(ρ) =
(ρ/ρ0)

2 exp[−ρ2/2ρ2
0]√

2πρ2
0

,

ζ = ρ0∆⊥ .

dW

dωd∆z

= |φ(0)|2 dσ

dωd∆z
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0)
−1 as a function of

ζ = ρ0∆⊥ for Z = 80 andφ(ρ) = φ0(ρ) (solid curve),
φ(ρ) = φ1(ρ) (dashed curve).



Results
• The first corrections inm/ε and in 1/mrscr to CC in spectrum of

bremsstrahlung and pair production are calculated analytically.

• The correction to the total cross section of the pair production is found
with the use of the dispersion relation.

• The ansatz for the second correction inm/ε in the total cross section
of the pair production is suggested.

• The CC to the differential cross section of bremsstrahlung is shown to
crucially depend on screening and on the beam shape.

• The fulfilment of the final-state integration theorem is checked ex-
plicitely.
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