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Small angles and large angular momestdhe quasiclassical approxima-
tion is applicable.
Within our accuracy one can use the following expressior{sfor

G(ry, mile) = [¥°(e = V(r)) — v - p2 + m]
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where D is the quasiclassical Green function of the Klein-Gordon
equation with the first correction.

First corrections can be represented as a sum ofithe correction and
the correction due to screening (smalllifinr,...).
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Correction in m/e (screening is neglected)
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Spectrum of Cc with O(m/<)-correction

oy 1daggeé /dz

The dependence of, 'do}, " /dx on x for

Z = 82, w = 50 MeV. Dashed curve: lead-
ing approximation; solid curve: first correc-
tion is taken into account.

The dependence ofgldaeC%IV/dy ony for

7 = 82, ¢ = 50 MeV. Dashed curve: leading
approximation; solid curve: first correction
is taken into account.



Spectrum of Cc with O(m/e)-correction
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spond to BM asymptotics.
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Screening correction (to leading term In

m/e)
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Screening correction (to leading term In

m/e)
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Corrections to the total cross section of pair
production

e Correction due to screening can be obtained by trivial integration of
the corresponding correction to the spectrum

e O(m/e)— correction can not be obtained this way

y—ee
dod.

S _ 4, [(1 _ %m _ a:)) f(Za)
_7;321—_2;)? (1 _ gx(l _ @) Reg(za)]

The correction is an odd functionin — 1 — z (andZa — —Za),
therefore does not allow to obtain the correction to the total cross section.
The correction to the total cross section comes from the region where one

of the particle is not ultrarelativisties quasiclassical approximation is
inapplicable.




Delbrlck scattering amplitude
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The integral inMé? is logarithmically divergent. Taking the integral
fromm /w to 1 —m /w, we find within logarithmic accuracy that 147!
vanishes and
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Dispersion relation

ReM " (w) = —w® P

T w/<w/2 _ w2)
Large logarithm in Ré//Z. """ could appear only if

Za)*mtIim g(Z«)
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Y

Im M2 = o

atw > m.
The cross section?~¢tund)¢ has the form
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Using these results we obtain
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Estimation of the next correction
O(m/w)-correction has large numerical coefficient (20 for heavy
atoms). How large is the next correctidii(m?/w?)?
Using the arguments similar to those presented ay ( ) the
following ansatz forr. ““? has been suggested in our recent pager

( ) Cc

y—ee(2) _ m? _ 2/ 92
Oe = 0y [bIn(w/2m) + ] ~) oy = a(Za)*/m
whereb and c are some functions af«. It was shown in

( ) that experimental data far,,;, are well described if one sebs=

3.78(w/m)0§10(01), c=0.



Comparison with the experiment
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Cc to differential cross section of pair pro-
](cz_lulcdtion and bremsstrahlung in the Coulomb
e
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Cc in the presence of screening
e Cc to pair production are insensitive to screeningat > 1/m
e Ccto bremsstrahlung dt/A,,;,, > 7y > l/m?

Screening suppresses the region of small momentum transfer therefore
a naive answer would be thatcGranish under this conditior:

] )'
However, this can not be true due to Olsen’s final-state integration theorem
( } ).
Another wrong answer would be that@o differential cross section of
bremsstrahlung are also insensitive to screeqing ).
This is also not trug : ).



Cc to differential cross section of
bremsstrahlung in a screened potential
At A < m the Cc to the cross section has the form

e — QAwdAAA [e & A A2. 1 dR
o = —
¢ Am3e2N2 |4 4e A, A2 | dALC
dR
A, = Al =145

A(A) = —i / dr exp[—iA - 7 — ix(p)|V,V(r),



Cc to differential cross section of
bremsstrahlung in a screened potential
At A < m the Cc to the cross section has the form

e — QAwdAAA [e & A A2. 1 dR
o = —
¢ Am3e2N2 |4 4e A, A2 | dALC
dR
A, = Al =145

A(A) = —i / dr exp[—iA - 7 — ix(p)|V,V(r),

R = /dAJ_ / drldrze—iA-(m—rz) {eix(pz)—ix(pl) . 1}



Cc to differential cross section of
bremsstrahlung in a screened potential
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Cc to differential cross section of
bremsstrahlung in a screened potential
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-~ The integral over\ | is
rapidly converging.



Finite beam size

If the peak of thep-distribution has widthip < /A,.i,e < m then

Y(r) = dlp)i (1),

¢(p) has a simple physical meaningi(p)|? is the electrons densitg{).

A(A) = =i [ drolp)expl~iA 1~ iX(p)IV, V(7).

Again, the differential probability crucially depends on the beam shape.
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Results

e The first corrections inn/e and in1/mr,.. to Cc in spectrum of
bremsstrahlung and pair production are calculated analytically.

e The correction to the total cross section of the pair production is found
with the use of the dispersion relation.

e The ansatz for the second correctiomirn/c in the total cross section
of the pair production is suggested.

e The Ccto the differential cross section of bremsstrahlung is shown to
crucially depend on screening and on the beam shape.

e The fulfilment of the final-state integration theorem is checked ex-
plicitely.
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