

16.04.2008

А.И.Лебедев

Исследования по физике частиц во встречных *ер*-столкновениях на коллайдере ГЕРА

1. Цели

- 2. ер-коллайдер ГЕРА
- 3. Квази-реальные фотоны
- 4. Жесткие процессы
- 5. Электро-слабые взаимодействия
- 6. Поиски экзотики
- 7. Итоги

Сотрудничество ФИАН - ДЕЗИ

С именем академика Павла Алексеевича Черенкова тесно связаны исследования сотрудников ФИАНа по физике частиц на *ер*-коллайдере ГЕРА в национальной немецкой лаборатории ДЕЗИ (Гамбург).

В 1983 г. на Международном Конгрессе в Италии (в Риме и Ватикане), где обсуждался (среди прочих) и вопрос о подготавлиемой католической церковью реабилитации «узника инквизиции» Галилео Галилея, П.А.Черенков познакомился с проф. Ф.Зоргелем (в то время директором ДЕЗИ), который, зная о высоком уровне исследований в ФИАНе, предложил создать сотрудничество ОФВЭ – ДЕЗИ для участия в работах на проектируемом в то время коллайдере.

Работы по созданию такого сотрудничества были проведены под руководством П.А.Черенкова, влияние которого было определяющим: создана внеструктурная группа научных сотрудников, получена поддержка Президиума Академии наук, согласован вопрос об авторских правах на результаты исследований, урегулированы финансовые и юридические условия работы в ДЕЗИ, решена проблема получения фондов на материалы для создания некоторых детекторов. В организационных мероприятиях участвовали также сотрудники ОФВЭ П.С.Баранов, А.С.Белоусов, Ф.И.Лебедев и С.В.Русаков.

Сотрудничество ФИАН-ДЕЗИ (продолжение)

П.А. Черенков участвовал и в подготовке физических исследований на коллайдере,. В частности он являлся соавтором проекта эксперимента по измерению полных сечений поглощения фотонов за счет процессов фоторождения адронов.

Деятельность по организации совместных работ была поддержана руководителем ОЯФ академиком М.А.Марковым и председателем Научного Совета при Президиуме АН по физике электромагнитных взаимодействий академиком А.М. Балдиным.

Группа ФИАНа вошла в коллаборацию Н1.

1. Цели

Сильные взаимодействия кварков и глюонов: КХД, 🧭 ~ 0.1. Жесткие процессы: Рт> 3 ГэВ, М> 5 ГэВ, Q²> 10 ГэВ²

Электрослабые процессы.

Суперсиметрия (Ф-Б), новые частицы.

Мягкие процессы при высоких энергиях.

2. ер-колайдер ГЕРА

Строительство: 1984-1991. Исследования по физике 1992-2007.

Электрон -- эффективный инструмент для изучения микромира. ($\alpha^{em} \cong 1/137$)!

s = (k + p)²,
$$Q^2 = -q^2 = -(k-k')^2$$

Полная энергия в системе центра масс W =319 ГэВ (~ на порядок выше, чем в лаборатории SLAC)

W= $\sqrt{s} \sim 319 \ GeV$, $Q^2_{MAX} \sim 10^5 \ GeV^2$, $\lambda_{MAX} \sim 1/1000 \ r_{proton}$, $\Delta \sim 10^{-16} \ CM$

-- доля импульса, уносимая кварком (Бьёркен)

 $y = \frac{p \cdot q}{p \cdot k} \quad \text{-- неупругость}$ $(y \cong 1 - E_{e'} / E_{e} = E_{\gamma} / E_{e})$

Значительное увеличение кинематической области исследований !

Кинематические границы в переменных Q² и х.

 $(xys=Q^2)$

Детектор Н1

ФИАН – в коллаборации Н1

Вклад ФИАН

- 1. Ярмо сверхпроводящего магнита (2000т).
- 2. Система измерения светимости ерстолкновений и мечения фотонов.
- 3. Обеспечение постоянного измерения светимости
- 4. Исследование процессов при малых Q².
- 5. Сборка и наладка элементов детектора.
- 6. Анализ экспериментальных данных.
- 7. Участие в разработке программного обеспечения.

Система измерения светимости и мечения фотонов

Элементы системы расположены в тоннеле коллайдера на расстоянии ~100, 44 и 37 м. от точки столкновений.

Светимость находится по числу квантов тормозного излучения.

E'_

Мечение: определение энергии фотона $E_{\gamma} = E_e - E'_e$

Фотоны тормозного излучения и электроны отдачи регистрировались черенковскими счетчиками полного поглощения, созданными в ФИАНе на основе радиационно стойких кристаллов КРС. Светимость *ер*-столкновений L=4.5 10³¹ cm⁻² c ⁻⁻¹.

Полная светимость

L(H1) = 480 pb

Использованная светимость (динамика набора по дням)

L(ZEUS) = 518 pb 30.06.2007 Status: 1-July-2007 Суммарная светимость~1 fb 400 H1 Integrated Luminosity / pb⁻¹ lectrons positrons low E 300 HERA-2 Результаты измерения светимости использованы 200 практически ВО ВСЕХ **HERA-1** выполненных на детекторе 100 2000 Н1 работах. 2003 500 1000 1500 1992 **Days of running**

Результаты исследований опубликованы в журналах Phys.Lett., Nucl.Phys. Eur.Phys.J, Zeit.f.Phys. и др.(~150 статей H1 и ~150 - 3EBC) и докладывались на представительных конференциях.

3. Квазиреальные фотоны (Q² << 1 ГэВ²)

3.1 Полные сечения адронного фотопоглощения σ_{tot} (W).

σ_{tot}(W) - глобальная характеристика
 электромагнитных взаимодействий
 адронов (правила сумм и т.д.)
 <---адроны

Приближение Вилльямса-Вайцзекера:

$$\begin{split} \frac{d\sigma_{ep}}{dy} &= \sigma_{tot}(W_{\gamma p})Flux(y) = \sigma_{tot}(W_{\gamma p})\frac{\alpha}{2\pi}\frac{1+(1-y)^2}{y}\ln\frac{Q_{max}^2(y)}{Q_{min}^2(y)}\\ W_{\gamma p} &= \sqrt{s_{\gamma p}} = 2\sqrt{yE_eE_p} \text{ and } Q_{min}^2(y) = (m_ey)^2/(1-y). \end{split}$$

Результаты измерений:

Исключен аномальный рост сечения с энергией

Путем изучения конечных адронных состояний найдены составляющие о:

упругое (ρ, ω, ψ), диссоциация γ, диссоциация **р**, двойная диссоциация (17+-)% (26+-5)% (9+-2)% 15% (фиксирована)

3.2 Упругое фоторождение векторных мезонов (ρ, ω, φ, ψ, ...) number of events

Ψ

2.8

3.2 3.4

500

 $V = \gamma \left(DVCS \right)$

Мезоны регистрировались по модам их распадов, например: $\psi \rightarrow \mu^+ + \mu^-$

Elastic Vector Mesons production

- $Q^2 = -(e e')^2$ photon virtuality
- W is $\gamma^* p$ center of mass (CM) energy
- $t = (p p')^2$ momentum transfer squared at the proton vertex

Переход от обмена полюсом Померанчука к двухглюонному обмену.

Переход к большим массм ------→ смена мягкого режима на жесткий!

4.3 Инклюзивное фоторождение адронов

Зависимость распределение адронов конечного состояния по поперечному импульсу Рт становится более слабой при Рт > 3 ГэВ. Экспоненциальное падение меняется на степенное, характерное для КХД: dN/dp² ~ (1 + P_T / P₀)⁻ⁿ, n ≅ 7.

4.Жесткие процессы

теорема факторизации

распределение сечение КХД фрагментация партонов

4.1 Образование струй адронов: 1, 2, 3,

Различные алгоритмы (конусный, кластерный и др.) реконструкции струй адронов дают близкие результаты.

Инклюзивные сечения образования струй - хорошее согласие с КХД во втором порядке Т-В (NLO)

Зависимость сечения от поперечной энергии струи Е ^{jet}тпри разных Q².

Зависимость числа струй от Е_т

Доля многоструйных событий растет с увеличением поперечных импульсов.

Многоструйные события и КХД

5-струйное событие в детекторе Н1

4.2 Глубоко неупругое рассеяние (DIS)

 \sim^2

е+р→ адроны

$$Q^{2} = -(k - k)$$
$$x = \frac{Q^{2}}{2p \cdot q}$$
$$y = \frac{p \cdot q}{1}$$

p.k

Структурные функции F(x,Q²) – динамика

$$\frac{d^2 \sigma^{NC}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \times \{Y_+ F_2^{NC} \mp Y_- x F_3^{NC} - y^2 F_L^{NC}\}$$

$$Y_{\pm} = 1 \pm (1-y)^2$$

Процесс глубоко неупругого рассеяния в детекторе Н1

Событие DIS

 $y = Q^2/xs$, the inelasticity parameter, $Y_{\pm} = (1 \pm (1 - y)^2)$ F_2 , F_L , and xF_3 are structure functions of the proton. • F_L : longitudinal component, damped by y^2 .

•
$$xF_{3}$$
: Small at $Q^{2}\ll M_{Z}^{2}$,

Сечение адронного поглощения виртуальных фотонов σ (DIS)

Структурные функции

Результаты обработки

Taylor, Friedman, Kendall

<u>Q</u>² (ГэВ²)

Сопостовление старых и новых данных о F_2 (x, Q^2)

Обнаружено новое явление: сильный рост F₂ при уменьшении х («увеличение» числа мягких партонов в протоне)

Обнаружено нарушение масштабной инвариантности при x < 0.03 !

Влияние высших поправок теории возмущений (NLO,)

Определена функция распределения партонов по *x* в Р. При х <10⁻⁻³ протон -- это сгусток преимущественно глюонов (Wilczek)

Плотность партонов в Р и в фотоне.

u, d, s – кварки, g – глюоны

Структурные функции для рождения с и b-частиц

Комптон эффект на нуклоне.

• The $\gamma^* p \to \gamma p$ cross section as a function of Q^2

 $\bullet \ \sigma \propto 1/(Q^2)^n$

 $n = 1.54 \pm 0.09 \pm 0.04$

Обобщенные структурные функции. АНАЛИЗ ВЕДЕТСЯ.

4.3 Определение константы сильного взаимодействия
1) F2 (NLO, NNLO), 2) отношение сеченний рождения 3 и 2 струй,
3) Ет зависимость инклюзивных сечений для струй и т.д.

α_s(M_z)=0.1207+-0.0014(ст)+-0.003(эксп)+-0.002(теор), F

PDG 0.1176+-0.002

th. uncert. exp. uncert.

0.1

Точность определения α_s сопоставима с результатам других экспериментов.

4.4 Дифракция в DIS

Детектор ЗЕВС

Псевдобыстрота: $\eta = -\ln \tan(\theta/2)$

10% событий - дифракция

Детектор Н1

Новое явление в DIS !

В обычном глубоко неупругом

рассеянии

не должно быть событий с $\eta < 2$ -

Обнаруженные события свидетельствуют о наличии дифракционного интервала (GAP)

Жесткая дифракция: обмен бесцветным объектом (2 глюона).

Сечения и структурные функции для глубоко неупругой дифракции

Нарушение скейлинга (NLO)

5.Электро слабые взаимодействия

Объединение слабых и электромагнитных взаимодействий при Q² > 10⁴ ГэВ²

5.3 Заряженные токи

$$\frac{d\sigma_{unpolCC}^{e^+p}}{dQ^2 dx} = \frac{G_F}{2\pi} \cdot \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \left[\overline{u}_i(Q^2, x) + (1 - y)^2 d_i(Q^2, x)\right]$$

$M_W = 82.87 \pm 1.83 (\exp)_{-0.16}^{+0.30} \pmod{6V}$

Замедление линейного роста с энергией сечения 4-х фермионного взаимодействия

5.3 Поляризационные измерения

е-пучок имеет поперечную поляризацию (Соколов-Тернов). Имеются устройства для поворота спина для получения продольной поляризации электронов: Р ≅ 40%

Результаты поляризационных экспериментов

Стандартная Модель (СМ):

Линейная зависимость сечения заряженных токов от поляризации Р_е и отсутствие правых токов.

σ[±](P_e) = (1±P_e)σ[±](P_e=0) (+ позитроны, - электроны)

$$P_{e} = \frac{N_{\rm RH} - N_{\rm LH}}{N_{\rm RH} + N_{\rm LH}}$$

→ Измерения ZEUS и H1 согласуются между собой и с предсказаниями СМ.

→ нет правых СС токов!

6.Поиски экзотики

6.1 Размер кварка

Измерение формфактора кварка в при Q² вплоть до ~ 40000ГэВ² дало:

H1 $R_q < 1.0 \ge 10^{-16}$ см ZEUS $R_q < 0.85 \ge 10^{-16}$ см

6.2 Избыточные мюоны

В событиях е⁺р-взаимодействий обнаружено в детекторе H1 при P_T > 40 ГэВ превышение выхода µ-мезонов на 2.5 стандартных отклонения по сравнению с предсказаниями Стандартной Модели.

В ZEUS - отклонений нет.

6.3 Гипотетические частицы

Поиски лепто-кварков LQ, возбужденных е, v, W, H ⁺⁺, s-кварков, нейтралино, глюино, гравитино, магнитного монополя и др. не дали положительных результатов

Ho установлены ограничения на массы, константы связи и сечения рождения этих частиц в ер-столкновениях.

LQ

7. Итоги

30 июня 2007 г. в 24:00 закончилась эксплуатация коллайдера ГЕРА (см. монитор).

Но исследования продолжаются!

Проводится анализ экспериментальной информации, записанной на магнитных носителях.

Впереди - еще годы работы (3-5 г.).

Результаты исследований

 Убедительно продемонстрирована справедливость КХД (высшие поправки по α_s улучшают согласие с экспериментом).

2. Обнаружено явление дифракции в DIS.

 Прецизионно измерена константа связи α_s сильных взаимодействий.

4. Измерены распределения кварков и глюонов в Р и у.

5. Установлены механизмы фотон-нуклонных реакций при высоких энергиях и больших Q2.

- Показано, что размер кварка не превышает 10⁻⁻¹⁶ см.
- 7. Доказано, что нет правых токов.
- Наблюдено подавление роста нейтринных сечений за счет обмена W–бозоном.
- 9. В исследованной кинематической области отсутствуют отклонения от СМ.
- Получены ограничения на массы гипотетических частиц, константы взаимодействия и сечения их рождения нейтральными и заряженными токами.

множественность

Увеличение n(ch) с энергией

Зависимость сечения электророждения Ψ -мезонов от Q^2

- Total cross section for elastic J/Ψ production as a function of Q^2 .
- $\bullet \ \sigma \propto (Q^2 + M^2)^{-n}$
- $Q^2 \ge 0 \text{ GeV}^2, n=2.486\pm 0.08\pm 0.068$

При $Q^2 > 2 \Gamma_2 B^2$ сечение быстро падает с ростом Q^2 .

sk-photon

Группа ФИАН, в которой ведущую роль играют А.С.Белоусов, Е.И. Малиновский и С.В. Русаков, давно и

ОБРАЗЕЦ

Запасной рисунок

ГЕРА и детектора Н1 и ЗЕВС

NC и CC-токи , М_W

 $M_W = 82.87 \pm 1.83 (\exp)_{-0.16}^{+0.30} \pmod{6V}$

Запасные рисунки

Запасной рис.

∆¢ (rad)

∆0 (rod)

ΔΦ (rod)

Запасной рис

ZEUS

10

100 Energy scale (GeV)