Фоторождение мезонов на ядрах: новые методы

А.С.Игнатов, В.Г.Недорезов, Институт ядерных исследований РАН

Введение

- Изучение взаимодействия нестабильных мезонов с ядрами («Меченые мезоны»
- Безмодельный учет Ферми движения нуклонов в ядре при измерении сечений фоторождения мезонов
- Полное сечение фотопоглощения на нейтроне

Установка GRAAL

Полное сечение фотопоглощения на протоне

О.Барталини и др.GRAAL – collaborationЯФ (2008)

Эффективность регистрации нейтронов в BGO-калориметре

- •<u>ВGO-калориметр:</u>
 - 15 32=480 кристаллов ВGО,
 - $25^{0} < \theta < 155^{0}, 0^{0} < \phi < 180^{0},$

```
L<sub>BGO</sub>=24см (~21r.l.)
```

```
Е<sub>γ</sub><2 ГэВ.
```

٠

- Использовалась реакция: γ+p→π+n,
- Эффективность регистрации
 - где N_n число событий с регистрацией нейтрона, N_{tot} – число «помеченных» нейтронов.

$$\varepsilon = \frac{N_n}{N_{tot}}$$

Эффективность регистрации нейтронов в BGO-калориметре

- <u>Работы, выполненные ранее для сцинтилляторов BGO:</u>
 - E_n = 0.4 4.7 M₉B, *H. Vincke et al., Nucl. Instr. and Meth. A 484, 102 (2002).*
 - > GEANT/FLUKA верно моделируют интегральную нейтронную эффективность.
 - E_n = 15 45 M₃B, S. Kubota et al., Nucl. Instr. and Meth. A 285, 436 (1989).
 - ▶ При E_n=45 МэВ и пороге ~10 МэВ эффективность ≈0.008 см⁻¹ (≈0.19 при L=24 см).
 - В данной работе E_n = 80 650 МэВ.
- Проблемы регистрации нейтронов:
 - γ /e⁻ (E>5MэB) ⇒ э.м. ливень ⇒ амплитуда на выходе ФЭУ однозначно связана с Δ E.
 - адроны ⇒ ионизация + ядерные взаимодействия ⇒ связь амплитуды импульса и ΔЕ через формулу Бете-Блоха.
 - нейтрон ⇒ ядерные взаимодействия ⇒ амплитуда импульса зависит от типов произошедших взаимодействий.
- Для корректного моделирования требуются нейтронные сечения и функция световыхода BGO.
- Необходима экспериментальная проверка эффективности регистрации нейтронов при различных энергетических порогах.

Эффективность регистрации нейтронов в ВGO-калориметре

Отбор событий с регистрацией нейтрона:

• =1 «заряженных» кластеров, ≥1 «нейтральных» кластеров в ВGO-калориметре,

• $\Delta E_{\text{barrel}} \text{ vs } \Delta E_{\text{BGO}} \Longrightarrow$ отбираются π ,

• Кинематика үр $\rightarrow \pi^{+}n \Longrightarrow$ отбираются нейтроны: $\Delta \theta_{n} = \theta_{n}(exp) - \theta_{n}(calc)$ и $\Delta \phi = |\phi_{\pi} - \phi_{n}|,$

где $\theta_n(exp)$ и $\theta_n(calc)$ – измеренный в BGO-детекторе и рассчитанный из $\theta_n(exp)$ полярный угол вылета нейтрона; ϕ_n и ϕ_n – измеренные азимутальные углы π^+ и нейтрона.

Эффективность регистрации нейтронов в ВGO-калориметре

Отбор событий без регистрации нейтрона:

Эффективность регистрации нейтронов в ВGO-калориметре [O.Bartalini e.a. NIM (2003)]

Фоторождение η-мезонов на дейтроне

- Отбор событий:
 - $\forall \gamma + d \rightarrow \eta + p + n_{sp} \quad u \gamma + d \rightarrow \eta + n + p_{sp}$ (sp spectator),
 - ∀ η→үү в BGO-калориметре, *р* или *n* в центральном или переднем направлениях,

$$M_{\eta} = \sqrt{(E_{\gamma_1} + E_{\gamma_2})^2 - (\vec{p}_{\gamma_1} + \vec{p}_{\gamma_2})^2} = \sqrt{2E_{\gamma_1}E_{\gamma_2}}\sqrt{1 - \cos\theta_{\gamma_1}\cos\theta_{\gamma_2} - \sin\theta_{\gamma_1}\sin\theta_{\gamma_2}\cos(\varphi_{\gamma_1} - \varphi_{\gamma_2})}$$

Фоторождение η-мезонов на дейтроне Коррекция Е_v и θ^{cm} с учётом ферми-импульса нуклона мишени:

Фоторождение η-мезонов на дейтроне

> Модель ETA-MAID2001 качественно описывает зависимость σ_n/σ_p от E_{γ}

Quasi-free photoproduction of η -mesons off the neutron I.Jaegle e.a CBELSA/TAPS arHiv:0804.4841v1 [nucl-ex] 30 Apr 2008 дейтронная мишень

Инвариантная масса:

W_в - по начальной энергии фотонов

W_R – по энергии конечных частиц с поправкой на Ферми движение в каждом событии (n + η (3π⁰))

S₁₁(1566) ; Γ = 162 МэВ ???? ; Γ = 60 МэВ (верхний предел) Актуальная задача: измерение полного сечения фотопоглощения на нейтроне с учетом Ферми модельно независимым способом

- p,π⁻
 n, π⁰
 p, π⁻ π⁰
 n, π⁰ π⁰
- n, η

Полное сечение фотопоглощения на нейтроне

- Mainz кружки
- Armstrong треугольники
- GRAAL сплошные кружки (EMIN-2003)
- Точность не более 10%
- D₁₃ резонанс практически не виден

n, π^0

n, π^0

p,π⁻

Фоторождение эта мезонов на легких ядрах Мечение мезонов

Корреляционный анализ нуклонов отдачи [Москва, EMIN-2001, p.170]

- Ядро сумма квазисвободных нуклонов
- 4π детектор + полная кинематика
- Низкий уровень фона

Прохождение мезонов и нуклонов в ядерной среде: INC – Intra - Nuclear Cascade

[Moscow, EMIN-2001, p.170]

Вероятность вторичных взаимодействий мезонов с внутриядерными нуклонами :

 $\mathbf{w}(\mathbf{k}) = (\sigma \rho l)^{\mathbf{k}} / \mathbf{k}! \quad \exp(-\sigma \rho l),$

где σ – сечение, ρ – ядерная плотность (0.17 Fm⁻³), l – длина свободного пробега.

 $\sigma = \sigma_{\tau \sigma \tau} (\eta N) = \sigma_{el} (\eta N) + \sigma_{in} (\eta N).$

Для медленных η –мезонов σ =150 mb.

Время жизни нестабильных мезонов зависит от скорости; для медленных η– мезонов средняя длина пробега *l* = 3 Fm.

Вероятности каскадных взаимодействий в рамках модели INC

[Москва, EMIN-2001, p.170]

Table 1: Particle emittion probability from nucleus ${}^{14}N$ on different steps of reaction initiated by photoproduction of π^0 and η mesons on intranuclear proton (%).

particle	reaction step	$\gamma p(^{14}N) \rightarrow \pi^0 p$	$\gamma p(^{14}N) \rightarrow \eta p$
p	1	95	95
π^0	1	80	0
η	1	0	70
p	2	22.0	20.8
n	2	23.7	22.1
π^0	2	8.7	8.6
π^+	2	8.67	9.1
π^{-}	2	7.84	6.78
p	3	8.85	7.15
n	3	8.90	7.05
p	4	2.61	2.17
n	4	2.90	2.02

Моделирование фоторождения мезонов на ядре 14-N (θ_p = 2⁰ – 10⁰); в рамках LAGGEN+INC

реакции множественного рождения мезонов (1-4) включены

Корреляции между энергией падающего фотона и энергией первичного каскадного протона

[Moscow, EMIN-2001, p.170]

Simulation: ²D target

30<theta<40

gamma+p --> pi0+p gamma+n --> pi-+p gamma+p --> rho0+p gamma+n --> rho-+p gamma+p --> eta+p gamma+p --> omega+p

Number of the charged tracks in forward >= 1

2<theta<10

Моделирование фоторождения мезонов на ядре 14-N в рамках LAGGEN+INC реакции множественного рождения мезонов (1-4) включены (E $_{\gamma}$ = 1.4 –1.5 GeV);

Корреляции между импульсом и углом вылета для первичного протона отдачи

Дейтронная мишень, $E_{\gamma} = 900-920 \text{ MeV}, \quad \theta <= 25^{\circ}, \text{ N}_{\text{charge tracks}} >= 1,$

моделирование

эксперимент (GRAAL)

Number of the charged tracks in forward = 1 Number of the neutral clusters in BGO = 2

2°<theta<10°

simulation

Experiment Kinematics is not included

gamma+d --> all channels gamma+p --> pi0+p gamma+n --> pi-+p gamma+p --> eta+p

Number of the charged tracks in forward >= 1

Egamma = 790-810 MeV

моделирование

эксперимент

Корреляция между углом вылета и импульсом первичного протона отдачи

Эксперимент на дейтроне

Моделирование

Pproton>0.7

Pproton <0.5

0.5

M

0.6

M

0.6 M

_0.5<P_rotan<0.7

Вылет коррелированных пар n + p из майларовой мишени

Alpha – угол между протоном и нейтроном в л.с.

Вылет коррелированных пар N + P из майларовой мишени Энергия протона в л.с.

«Исследование ядерной материи и астрофизических процессов на пучках фотонов, электронов и тяжелых ионов».

Изучение взаимодействия нестабильных мезонов с ядрами («Меченые мезоны»)

Безмодельный учет Ферми движения нуклонов в ядре при измерении сечений фоторождения мезонов

Полное сечение фотопоглощения на нейтроне

Новые явления релятивистской физики и квантовой электродинамики. Фундаментальные проблемы взаимодействия высокоинтенсивных электромагнитных полей с веществом. – Эффекты высокого порядка по α

Нужны новые экспериментальные установки с высоким разрешением и эффективностью. Модернизация экспериментальной базы в России.