Обзор результатов с детектора КЕДР

В. Блинов

Институт Ядерной Физики им. Будкера СО РАН Новосибирск

Комплекс ВЭПП-4

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

🕼 Комплекс ВЭПП-4

Метод резонансной деполяризации

$$egin{aligned} \Omega_{
m S} &= \omega_0 (1 + \gamma \cdot \mu' / \mu_0) \ \Omega_{
m S} \pm \Omega_{
m res} &= {
m n} \cdot \omega_0 \end{aligned}$$

C.

Комплекс ВЭПП-4. Измерение энергии

- около 2000 калибровок
- точность измерения $10^{-6} (1 \text{ кэB})$
- точность интерполяции $(5 \div 15) \times 10^{-6} (10 \div 30 \text{ кэB})$

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

Комплекс ВЭПП-4. Измерение энергии

Метод Обратного Комптоновского Рассеяния (ОКР)

• R. Klein et al., NIM A384(1997) 293: BESSY-I

$$\omega_{_{\mathsf{M}\mathsf{a}\mathsf{K}\mathsf{C}}}^{\prime}=rac{\mathrm{E}^2}{\mathrm{E}+\mathrm{m}^2/4\omega_{_{\mathsf{Л}\mathsf{a}\mathsf{3}\mathsf{e}\mathsf{p}\mathsf{a}}}}$$

• С0
$$_2$$
 – лазер ($\lambda = 10.591\,$ мкм, $\omega_{ extsf{nas}} = 0.12\,$ эВ)

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

Метод Обратного Комптоновского Рассеяния

• точность измерения энергии 3 · 10⁻⁵: 100 кэВ/10 мин (статистика) 60 кэВ (систематика)

• точность измерения энергетического разброса: $\approx 7\%$ (статистика)

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

🕱 Детектор КЕДР

- 1 Вакуумная камера
- 2 Вершинный детектор
- 3 Дрейфовая камера
- 4 Пороговые аэрогелевые счетчики
- 5 Время-пролетные счетчики
- 6 Жидко-криптоновый калориметр
- 7 Сверхпроводящая катушка
- 8 Ярмо магнита
- 9 Мюонные камеры
- 10 Цезий-йодовый калориметр
- Компенсирующий соленоид
- 12 Квадруполь

🕱 Детектор КЕДР. Система АЧС

Пороговые аэрогелевые счетчики

- Показатель преломления аэрогеля 1.05
- πK разделение от 0.6 до 1.5 ГэВ/с
- 160 счетчиков в два слоя
- 1000 литров аэрогеля
- Метод АШИФ (АэрогельШИфтерФэу)
 - уменьшение общего числа фотоумножителей
 - увеличение размеров счетчика

C.

🕊 Детектор КЕДР. Система АЧС

🕱 Детектор КЕДР

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

Физические задачи

- Измерение масс элементарных частиц
 - Низкая энергия: J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^\pm -мезоны, au-лептон
 - Высокая энергия: $\Upsilon(1s), \Upsilon(2s), \Upsilon(3s), \Upsilon(4s)$ мезоны
- Измерения лептонных ширин ψ и Υ мезонов
- Измерение R в области 2E = 2 ÷ 10 ГэВ
- Измерение сечения $\gamma\gamma
 ightarrow hadrons$ и другие 2γ -процессы
- Измерение вероятностей радиационных переходов в $c\bar{c}$ и $b\bar{b}$ системах и распадов с вероятностями 10^{-4} и более (десятки распадов на статистике 10^7 $c\bar{c}$)

C:

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

ಾ

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

ಾ

Частица	$rac{\Delta M}{M} imes 10^6$ (PDG)	
p	0.1	
п	0.1	
е	0.1	
μ	0.1	
π^{\pm}	2.5	
$\psi(2S)$	3.2	
J/ψ	3.5	
π^0	4.5	

$\Gamma_{ m e^+e^-} imes \Gamma_{ m e^+e^-}/\Gamma$ и $\Gamma_{ m e^+e^-} imes \Gamma_{\mu^+\mu^-}/\Gamma$ для J/ψ – мезона

• Сканирование J/ψ , $\int L dt = 230 \text{ нб}^{-1}$ $\Gamma_{e^+e^-} \times \Gamma_{e^+e^-}/\Gamma = 0.3323 \pm 0.0064 \pm 0.0048 \text{ кэВ}$ (2.4%) $\Gamma_{e^+e^-} \times \Gamma_{\mu^+\mu^-}/\Gamma = 0.3318 \pm 0.0052 \pm 0.0063 \text{ кэВ}$ (2.4%)

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

C.

$$m{\Gamma}_{e^+e^-} imes m{\Gamma}_{e^+e^-} / m{\Gamma}$$
 и $m{\Gamma}_{e^+e^-} imes m{\Gamma}_{\mu^+\mu^-} / m{\Gamma}$ для J/ψ – мезона
 $\Gamma_{e^+e^-} imes \Gamma_{ll} / m{\Gamma} = 0.3320 \pm 0.0041 \pm 0.0050$ кэВ (1.9%)
 $Br(J/\psi \to e^+e^-) = (5.94 \pm 0.06)\%$ PDG

Ширина	КЕДР, кэВ	PDG, кэВ
Γ11	5.59 ± 0.12	$5.55 \pm 0.14 \pm 0.02$
Г	94.1 ± 2.7	93.2 ± 2.2

- Ядерная физика 72, N3 (2009)
- Physics Letters B 685 (2010)

Масса, полная ширина и $\Gamma_{ee} - \psi$ (3770)

• Два сканирования области $\psi(2S) - \psi(3770)$. $\int L \, dt \simeq 2 \, \mathrm{n} \mathrm{G}^{-1}$

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

C:

$\psi(3770)$

• Nuclear Physics B (Proc. Suppl) (2008) 353

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

Массы D – мезонов

• Набор в пике $\psi(3770)$. $\int Ldt = 0.9 \, \mathrm{n} 6^{-1}$

C.

Масса т- лептона

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

cə

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

C)

Принцип лептонной универсальности СМ

$${\rm G_e}\equiv{\rm G}_\mu\equiv{\rm G}_\tau$$

$$\left(\frac{\mathbf{G}_{\tau}}{\mathbf{G}_{\mu}}\right)^{2} = \left(\frac{\mathbf{m}_{\mu}}{\mathbf{m}_{\tau}}\right)^{5} \left(\frac{\mathbf{t}_{\mu}}{\mathbf{t}_{\tau}}\right) \operatorname{Br}(\tau \to \mathrm{e}\nu_{\tau}\overline{\nu}_{\mathrm{e}}) \cdot \frac{\mathrm{F}_{\mathrm{cor}}(\mathbf{m}_{\mu},\mathbf{m}_{\mathrm{e}})}{\mathrm{F}_{\mathrm{cor}}(\mathbf{m}_{\tau},\mathbf{m}_{\mathrm{e}})} \equiv 1$$

Точность проверки $\mu - \tau$ – универсальности

$rac{G_F^2(au)}{G_F^2(\mu)}$	$t_{ au}$, fs	$B_{ au ightarrow u_ au} e ar{ u}_e$, %	$m_{ au}$, МэВ	Примечание
	305.6 ± 6.0	17.93 ± 0.26	$1784.1^{+2.7}_{-3.6}$	PDG 1992
0.9405	± 0.0185	± 0.0136	$+0.0095 \\ -0.0071$	- 2.4 <i>σ</i>
	290.6 ± 1.1	17.84 ± 0.06	$1776.99 {}^{+0.29}_{-0.26}$	PDG 2008
1.0020	± 0.0038	±0.0034	± 0.0008	+0.4 <i>o</i>

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

cə

cə

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

$\mathsf{J}/\psi ightarrow \gamma \overline{\eta_\mathsf{c}}$

• Набор пик/подложка J/ψ , $\int L dt pprox 2 \, { m n6}^{-1}$

() Измерение R

В. Блинов

() Измерение R

Адронный вклад в аномальный магнитный момент мюона

$$\mathrm{a}_{\mu}^{\mathrm{had}} = \Big(rac{lpha\mathrm{m}_{\mu}}{3\pi}\Big)^2 \int\limits_{4\mathrm{m}_{\pi}^2}^{\infty} \mathrm{R}(\mathrm{s})\hat{\mathrm{K}}(\mathrm{s})rac{\mathrm{ds}}{\mathrm{s}^2},$$

где: $\hat{\mathrm{K}}(\mathrm{s})$ меняется от 0.63 до 1 при изменении s от $4\mathrm{m}_\pi^2$ до ∞ , при s $o\infty$

$\sqrt{\mathrm{s}}$, ГэВ	$\Delta \mathrm{a}^{\mathrm{had}}_{\mu}, 10^{-10}$	$\Delta a_{\mu}^{ m had}$, %
2 <i>m</i> _π -2.0	640.7 ±4.4	92.6
2.0-5.0	41.4 ± 1.7	6.0
5.0–∞	9.9 ± 0.2	1.4
Всего	692.0 ± 4.7	100.0

В. Блинов

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

() Измерение R

Адронный вклад в $\alpha({
m M}_{
m Z}^2)$

$$lpha(\mathrm{s}) = rac{lpha(\mathrm{0})}{1 - \Delta lpha_{\mathrm{lep}}(\mathrm{s}) - \Delta lpha_{\mathrm{had}}(\mathrm{s})},$$

где:
$$\Delta \alpha_{
m lep}({
m M}_Z^2) = 315.0 \cdot 10^{-4}, \ \Delta \alpha_{
m had}({
m M}_Z^2) = -rac{lpha(0){
m M}_Z^2}{3\pi} \int\limits_{4{
m m}_\pi^2}^\infty rac{{
m R}({
m s}){
m ds}}{{
m s}({
m s}-{
m M}_Z^2)}$$

$\sqrt{\mathrm{s}}$, ГэВ	$\Delta lpha_{ m had}^{(5)}({ m M}_{ m Z}^2), 10^{-4}$	$\Delta lpha_{ m had}^{(5)}({ m M}_{ m Z}^2)$, %		
2 <i>m</i> _π -2.0	58.8 ± 1.6	21.3		
2.0-5.0	48.3 ± 2.3	17.5		
5.0-7.0	18.3 ± 1.1	6.6		
7.0–12.0	30.4 ± 0.9	11.0		
12.0–∞	120.3 ± 0.2	43.6		
Всего	276.1 ± 3.1	100.0		
$\sim 80\%$ ошибки из области $2 < \sqrt{ m s} <~$ 7 ГэВ.				

Третьи Черенковские чтения, Москва, ФИАН, 6 апреля 2010

Измерение R и поиск узких резонансов

- Измерение *R* в области 2*E* = 1.85 ÷ 10 ГэВ
- Сканирование области 2 $E = 1.85 \div 3.10$ ГэВ, $\int L dt \approx 300$ нб⁻¹, $\triangle E_{\rm B} = 0.7 \div 1.0$ МэВ

• $\Gamma^{R}_{ee} \cdot Br(R \rightarrow hadr) < 150$ эВ, 95%CL (предварительно)

CO

- Измерены массы J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^\pm мезонов и au лептона
- Измерены Г $_{ee} imes \Gamma_{ee} / \Gamma$ и Г $_{ee} imes \Gamma_{\mu\mu} / \Gamma$ для J/ψ мезона
- Измерены масса и полная ширина η_c мезона и вероятность распада $J/\psi \to \gamma \eta_c$
- Ведется набор статистики для измерения *R* в области 2*E* = 1.85 ÷ 4 ГэВ
- Поставлен предел на Г^R_{ee} · Br(R → hadr) < 150 эВ, 95%СL в области 2E = 1.85 ÷ 3.1 ГэВ
- Завершается выполнение физической программы на энергии $E_B < 2 \, \Gamma$ эВ

Идет подготовка к работе на энергии $E_B = 2 \div 5 \ \Gamma imes B$

- Набор $\int L \, dt \simeq 200 \div 300 \; {\rm n6^{-1}}$ для изучения двухфотонных процессов
- Измерение масс ↑(1S), ↑(2S), ↑(3S), ↑(4S)- мезонов
- Измерение R в области 2*E* = 4 ÷ 10 ГэВ

C: