О возможности интерпретации данных с ускорителей AGS, SPS, RHIC, LHC, как адронизации не кварк-глюонной, а валонной плазмы

> О.Д.Чернавская ФИАН

Что ожидается от LHC?

• Бозон Хиггса:

Поле Х.– идея нетривиального физического вакуума
 *L*_{Higgs} = ... +mφ² – λφ⁴ → *E*_{vac} = -m²/4λ
 Бозон Хиггса – более высокий порядок взаимод.
 ≪новые данные» о кварк-глюонной плазме

(QGP) - ?

• а что есть «старые данные» ?

История вопроса

Кварки, как они появились: феноменология конституентные или валентные кварки (=валоны) Q: m(Q) =1/3M_N ≅ 330 MeV, r (Q) ≅ 1/3r (H)

 Цель: наведение порядка в «зоопарке» элементарных частиц = Аддитивная Кварковая Модель (АКМ)

HO:

 Температура Хагедорна: статсумма Z (T,V)~ ∫ exp(m/T_H – m/T)dm ↔ T_{Hag} = предельная T существовани адронов
 Конфайнмент: невылетание кварков за пределы адрона (единственный абсолютный эффект)

Квантовая ХромоДинамика (КХД)

- «точная» теория: количественное описание
- «токовые кварки» и глюоны: q,g: m=0
- «бегущая константа связи» α_S~ln⁻¹(q2/Λ²), Λ ≅ 200 МэВ
 Ассимптотическая свобода
 Инфракрасная расходимость
 Понятия «физический вакуум»: ε_V < 0 «пертурбативный вакуум» : пустой, ε_V = 0
 Конфанмент — остается загадкой

Кварк-глюонная плазма (QGP)

 В пределе беконечных Т\плотностей: квазисвободный газ безьассовых кварков и глюонов в пертурбативном вакууме

- В «обычных условиях» : (квази) идеальный адронный газ
- ЧТО В ПРОМЕЖУТКЕ?

Что в промежутке?

• Е.Л.Фейнберг, 1989 :

На языке КХД:

• Физический вакуум КХД: • Глюонный конденсат $\varepsilon \sim \langle 0 | F^2(G) | 0 \rangle \simeq -500 \div 600 \text{ M}_{3}\text{B} / \Phi_M^3$ обеспечивает конфайнмент Кварковый клнденсат: <0 | уу 0> ~ 1.7 Фм⁻³ нарушение киральной симметрии \leftrightarrow масса частиц • Пертурбативный вакуум КХД — пустой, т.е. в пределе Т,µ → ∞ конденсаты разрушаются одновременно или нет?

Сводная диаграмма (из всех теорий)

Рис. 2

Модель мешков (MIT bag)

- Придумана для описания спектров адронов $\{m_{\rm H}\}$: $B_{\rm MIT} \cong 50\div100 \,{\rm M}_{2}{
 m B} {\rm M}_{3}$
- Идеология: вытеснение вакуумных полей из адрона создает избыточное внешнее давление

 «модернизированная» модель остается практически единственной, предлагающей хоть какое-то уравнение состояния вещества.

Статсумма Z_i(T,V,µ) для идеального газа в j-ой фазе

$$\ln Z_{j} = -\ln Z_{vac} + \frac{V}{T} \sum_{i} \frac{G_{i}^{B}}{6\pi^{2}} \int \frac{dkk^{4}}{\sqrt{k^{2} + m_{i}^{2}}} \frac{1}{\exp(\frac{\sqrt{k^{2} + m_{i}^{2}}}{T}) - 1} + \frac{1}{1}$$

G^F_i, G^B_i, m_i, µ_i — коэффициенты вырождения, массы и химпотенциал для бозе- и ферми-частиц i-го типа; lnZ_{vac} - отражает эффективное взаимодействие с вакуумом

> р, n, ɛ- давление, плотность частиц и плотность энергии – соответстветствующие производные Z

Уравнения состояния для 2-хфазной материи

• QGP: $p_{QGP} = \{q, g\} - B_{QGP}, B_{QGP} = 0.5 \ \Gamma \ni B \setminus \Phi M^3$

H: $p_H = \{\pi, K, p, p^-, \Lambda...\}$ Равновесие фаз: $p_{QGP}(T, V, \mu_B/3) = p_H(T, V, \mu_B) \leftrightarrow T_c(\mu_B)$

 Важно: Т_с≡Т_d≡Т_{chir} ≅ 180 МэВ – де\\конфайнмент и восстановление киральной симметрии

совпадают

Диаграмма состояний

Уравнения состояния 3-х фазной материи

- QGP: $p_{QGP} = \{q, g\} B_{QGP}, B_{QGP} = 0.5 \Gamma B \Phi M^3$
- $Q\pi$: $p_Q = \{Q, \pi, (K)\} B_{Q, B_Q} = 50 \text{ M} \Rightarrow B \setminus \Phi M^3$ • H: $p_H = \{\pi, K, p, p^-, \Lambda \dots\}$
- $p_{QGP}(T,V,\mu_B/3)=p_Q(T,V,\mu_B/3)$ ↔ $T_{chir}(\mu_B) \cong 200$ МэВ — восст.\\наруш. киральной симметрии
- $p_Q(T,V,\mu_B/3) = p_H(T,V,\mu_B) \leftrightarrow T_d(\mu_B) \cong 140$ МэВ — де\\конфайнмент (≡**Т Хагедорна!**)

Диаграмма состояний 3-х фазной материи

Как это может проявляться в реальности?

• Ранняя вселенная ?

• Соударения тяжелых ядер на ускорителях

Схематическая картина соударения тяжелых ядер в современных ускорителях

Современные ускорители

ускоритель	Год	ТИП	пучок	$\sqrt{S_{NN}}$	€0 ^{расч}
	зап			ГэВ	ГэВ/Фм ³
AGS//BNL	1992	tar	¹⁹⁷ Au	5	1.5
SPS\\CERN	1994	tar	²⁰⁸ Pb	17.5	3.7
RHIC//BNL	2000	col	¹⁹⁷ Au	160	7.6
LHC\\CERN	2010 ?	col	²⁰⁸ Pb	5000 ?	13?

Экспериментальные наблюдаемые

Относительный выход вторичных адронов n_i/n_k

 T_{ch}

• Выход странных частиц

Выход дилептонов

 уравнение сост., длительность τ

 Распределение вторичных адронов по поперечному импульсу , <pt> — T_f
 интерпретация зависит от принятой модели, т.е. сценария адронизации

Возможные сценарии охлаждения QGP

- 1: «Прямой ФП» I —го рода $QGP \rightarrow H \rightarrow freez-out$
- 2: ФП І-го рода в 3-х фазной материи $QGP \rightarrow Q\pi K \rightarrow H \rightarrow freez-out$

3:! «Ранний химический Freez-out»: T=T_{ch}

• 4: «мягкий» $\Phi\Pi$: QGP $\rightarrow Q\pi K \rightarrow$ freez

Сценарий 1: «прямой фазовый переход» І-го рода

• QGP \rightarrow H \rightarrow разлет • $T=T_c \cong 180 \text{ M} \Rightarrow B$ mixed phase $T_f \cong 100 \text{ M} \ni \text{B}$ свободный разлет • Адронная фаза Н – длительное время

гораздо меньше

T_f

Сценарий 2: два последовательных фазовых перехода I-го рода в 3-х фазной материи

QGP

QGP+H

Т

Сценарий 3: ранний химический фриз-аут

- Артефакт
- QGP короткое время, затем (как-то?) квазиидеальный адронный газ Н
- Т=Т_{ch} температура «замораживания» состава адронов
- Т=Т_f ≅100 МэВ свободный разлет

«Мягкая» адронизация валонной фазы

- QGP \rightarrow Q π 1-го рода
- Qπ → H плавный переход
- Адронизация = аннигиляция валонов типа
 Q + Q⁻⁻ → ππ, pn, KK,...
 T= T_f ≅ T_d ≅ 100 MэB – свободный разлет практически совпадает с полным деконфайнментом

«за» и «против» раннего химического фризаута

- Единый способ описания данных AGS, SPS, RHIC, LHC
- Единая температура вымораживания для всех типов адронов (! +\- !)
- Простота описания: идеальный адронный газ

- Единый способ описания данных AGS, SPS, RHIC, LHC
- уравнения состояния ИГ: при данных Т неприменим (искл. объем) – но: другого нет
- «замораживание» хим.
 состава немотивировано (особо: pp аннигиляция)

Рис. 10

Относительный выход различных адронов

• «ранний фризаут» $N_i \sim (m_i/T) \exp\{(\mu_{Bi} - m_i)/T\} \rightarrow \Phi_{ik} = N_i/N_k$ минизация «ошибки» $\chi^2 = \Sigma (1 - \Phi_{th}/\Phi_{exp})^2 \rightarrow$ $T = T_{ch}$ - единая для всех типов адронов (!)

• Аннигиляция валонов QQ $\rightarrow \pi\pi, KK\pi; QQQ \rightarrow pn\pi, \Xi\Xi\pi, \Lambda\Sigma\pi; ...$ \rightarrow минимизация ошибки - аналогично \rightarrow единая $T_d \cong T_f \cong 110 MeV$ для всех \mathcal{E}_{in} (!)

Относительный выход различных адронов: сравнение теорий с экспериментом

N/N	Ex	(p	MS	Q	Exp	MS	Q	Exp	MS	Q
/dat		Α	G	S	S	Р	S	RH	I	С
p/π	1		0.78	0.86	0.228	0.238	0.209	0.126	0.124	0.110
p ⁻ /p *10 ⁻⁴	5		4.7	4.7	0.067	0.055	0.08	0.632	0.629	0.628
K+/K-	5.1	4	4.45	4.49	1.85	1.90	1.89	1.156	1.118	1.125
χ ²			0.17	0.07		0.36	0.4		0.047	0.041
${f T}_{ m ch}$ ${f \mu}_{ m ch}$	12	.5	+/-6 540	MeV MeV	168	+/-2 270	MeV MeV	174	+/-7 46	MeV MeV
T _f	12	.0	Me	V	115	Me	V	110	Me	V

Выход дилептонов (е+ е-) - теория

- Е.Л.Фейнберг, 1960 : «прямые фотоны и дилептоны – возможная «проба» субадронных состояний материи»
- QGP: $qq^- \rightarrow g\gamma^* \dots \rightarrow e^+ e^-$ H: распад резонансов $\rho \rightarrow e^+ e^-$
- Валонная фаза: $QQ^- \rightarrow e^+ e^-$, $\pi^+\pi^- \rightarrow e^+ e^-$

Выход дилептонов (е+е-) - эксперимент

Puc. 13

Дилептоны в стандартной картине и в «валонной» картине

- Без дополнительных предположений – недооценка на порядок в в области М_{ее} ≅ 0.5 ГэВ
- Эффект «плавления резонансов»: неидеальные мезоны (в частн., р-мезон) в плотной среде
- Удовлетворительное описание мягкого спектра за счет 2-х процессов: $\pi\pi \rightarrow e^+ e^ QQ^{-} \rightarrow e^+ e^-$ •Но: длительность процессаважный параметр, оценка Сечение взаимодействия QQ - ?

Выводы

- Экспериментальные измерения объективны, интерпретация – модельно зависима
- Гипотеза «раннего химического фризаута» = main stream
- Гипотеза 3-х фазной материи описывает экс. данные по крайней мере не хуже
- Критический эксперимент в области пл. энергий где QGP не возможна, а Q=валонная фаза уже
- Но: точка зрения не модная = не main stream

Заключение

• «Загадка» температуры Хагедорна – решена • «Загадка» конфайнмента – нет • Бозон Хиггса – имеет отношение • Единая Т адронизации ? • ...думать дальше, имея в виду модельную зависимость Спасибо за внимание

Литература

- 1. Фейнберг Е.Л. «On deconfinement of constituent and current quarks» prep. FIAN №197 (1989)
- Ройзен И.И., Чернавская О.Д. ЯФ 66 стр. 185 (2003)
- Feinberg E.L. *Nuovo Cimento* **34** p. 391 (1976)
- Chernavskaya O.D., Feinberg E.L., Royzen I.I. ЯФ
 65 стр. 167 (2002)
- Ройзен И.И., Фейнберг Е.Л., Чернавская О.Д.
 УФН, 174 № 5 стр. 473 (and refs. therein)