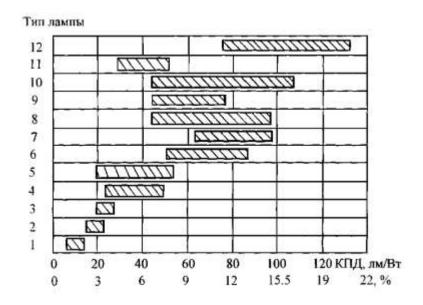


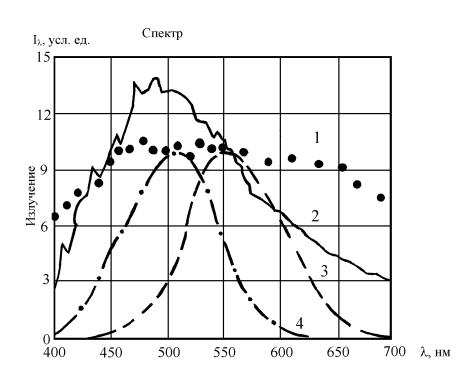
Третьи Черенковские чтения ФИАН

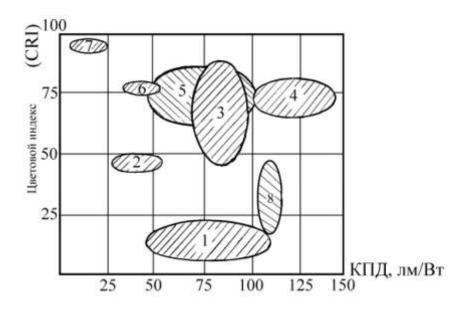
Чл.-корр. РАН ДИДЕНКО А.Н


Высокоэффективные источники видимого света

6 апреля 2010 г. Москва

Перспективы создания новых источников света


Функция Планка для определения спектральной плотности $I_{\nu} = \frac{2(k_{\rm B}T)^3}{c^2h^2} \frac{x^3}{e^x-1}$, где $x = (h\nu)/(k_{\rm B}T)$, x_1, x_2 — область чувствительности человеческого глаза.

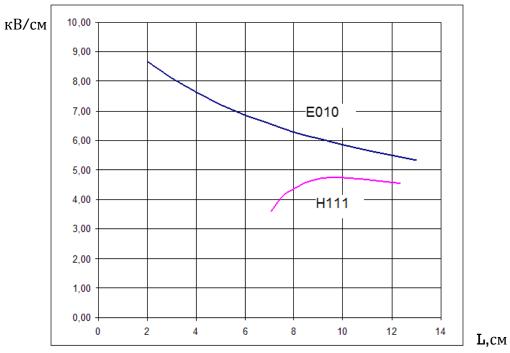

Преобразование электрической энергии в световую лампами разных типов: 1 - лампа накаливания;

- 2 галогенная вольфрамовая лампа; 3 галогенные инфракрасные рефлекторы; 4 ртутная лампа;
 - 5 малогабаритная люминесцентная лампа (5-26 Bт); 6 тоже с мощностью питания 27-40 Bт;
 - 7 крупногабаритная люминесцентная лампа;
 - 8 металло-галогенные лампы;
- 9 малогабаритные металло-галогенные лампы; 10 натриевая лампа высокого давления; 11 обычная натриевая лампа; 12 серная СВЧ-лампа.

Преимущество СВЧ-ламп

Спектральные характеристики: 1 - солнца 2 – серного СВЧ-источника света; 3, 4 – человеческого глаза.

Эффективность источников света: 1 — натриевые с высоким давлением; 2 — ртутные; 3 — люминесцентные крупногабаритные 4 — серные СВЧ-лампы; 5 — металло- галогенные; 6 — натриевые, обычные; 7 — лампы накаливания; 8 - светодиоды.


Развитие Ar-S СВЧ-источников света

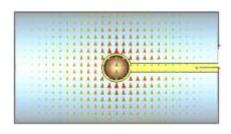
Fusion Lighting с 1980г по 2000 г. Кафедра электрофизических установок МИФИ с 1996 г. LG electronics с 2000 г. ИЗМИРАН, ВНИСИ, ВЭИ, МЭИ, ОАО «Плутон» с 1998 г.

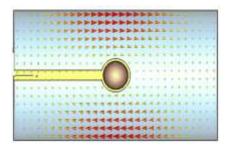
Характеристика	NASM 1996	Solar 1996	Light-Drive 1998	Светоч-ПРО 1997	Светоч-СВ 1998	Свэтон 2000	Plasma Lighting System 2006
Мощность СВЧ, кВт	3.1	1	1	0.9	0.9	0.9	0.4
Мощность от сети, кВт	5.1	1.425	1.4	1.325	1.325	1.325	0.75
Световая отдача "от сети", лм/Вт	60	62	70	70	70	70	85
Световая отдача "от СВЧ", лм/Вт	94	92	98	102	102	102	140

Выбор рабочего типа колебаний резонатора

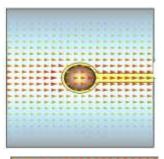
Зависимость напряженности электрического поля для резонаторов, на ${\bf E}_{010}$ и ${\bf H}_{111}$ типах колебаний от их длины.

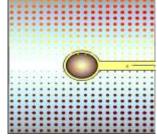
Напряженность электрического поля резонатора, работающего на ${\bf E}_{010}$ типе колебаний


L, cm	3.0	4.0	6.0	8.0
ξ , $Om^{1/2}/M$	515	446	364	315
E ₀ , кВ/см (Р=220Вт)	8.1	7.62	6.86	6.29

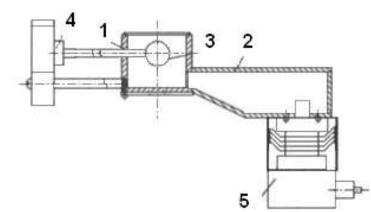

Напряженность электрического поля резонатора, работающего на \mathbf{H}_{111} типе колебаний

R/L	1	0.75	0.5	0.3(3)
L, mm	70.61	77.31	93.86	123.22
ξ, Om ^{1/2} /m	174	202	227	226
E ₀ , кВ/см (Р=220Вт)	3.61	4.25	4.74	4.55




Численное моделирование

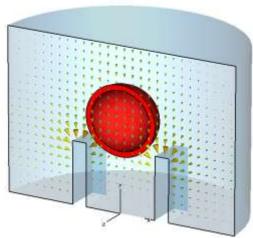
Н₁₁₁ – тип колебаний

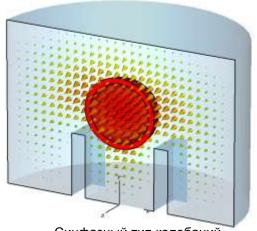


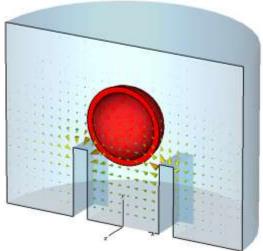
 ${\bf E}_{010}$ – тип колебаний.

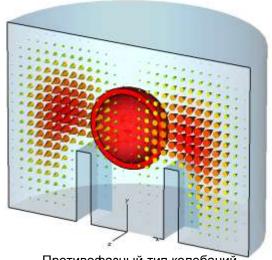
	D, см	L, см	f, MГц	ξ, Οм ^{1/2} /м
H ₁₁₁	7.8	14.0		270
${f E}_{010}$	91.35	80	2462	306
	91.15	60	2402	352.2
	90.95	50		386

Источник на основе резонатора с \mathbf{E}_{010} типом колебаний


- 1 резонатор;
- 2 волновод;
- 3 колба;
- 4 -электромотор;
- 5 магнетрон

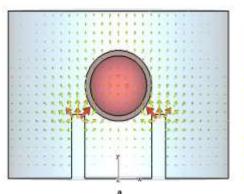

световой поток ~ 25000 Лм светоотдача ~ 65 лм/Вт

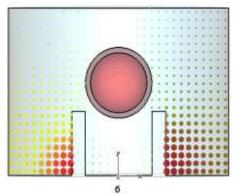

Штыревые структуры

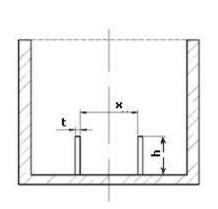

Синфазный тип колебаний с продольным электрическим полем.

Синфазный тип колебаний с поперечным электрическим полем.

Противофазный тип колебаний с продольным электрическим полем.

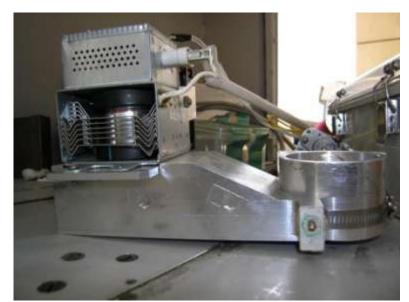



Противофазный тип колебаний с поперечным электрическим полем.

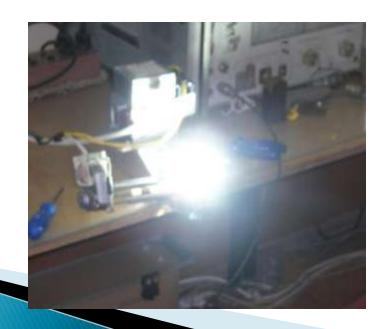


Синфазный тип колебаний с продольным электрическим полем

L, мм	D, мм	h, мм	t, mm	S, MM	X, MM	f, МГц	ξ, Om ^{1/2} /m
47	66	17.7	4	20	20	2462	440

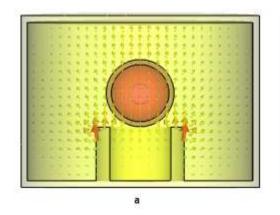


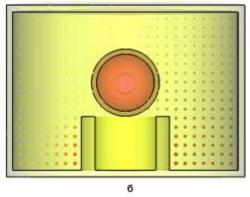
СВЧ-лампа (вид сверху и сбоку).



Измерение светоотдачи

Внутренний диаметр, мм	Количество серы, мг	Плотность серы, мг/куб.см.	Светимость, Лм
17	4,4	1,711	24640
17	5,4	2,098	21650
23	5,4	0,846	20240
27	16,0	1,552	30360


светоотдача "от сети" ~ 80 лм/Вт, "от СВЧ" ~ 140 лм/Вт


СВЧ – лампа в работающем состоянии

Резонатор с кольцевым штырем

Структура электрического и магнитного полей

Высота резонатора, мм	Диаметр резонатора,	Высота штыря,	Толщина штыря,	Внутр. диаметр	f, МГц	ξ, Οм ^{1/2} /м
	MM	MM	MM	штыря, мм		
47	66	15,9	4	20	2462	500

Внутренний диаметр, мм	Количество серы, мг	Плотность серы, мг/куб.см.	Светимость, Лм
27	16,0	1,552	31600


Современное состояние исследований в мире

Firm	Country	Plasma Light Systems	Microwave power, W	Light Flux, Im
Ceravision Inc.	UK	Ecolumination	50	6300
Luxim Corporation	USA	LIFI	270	33000

LIFI

Ecolumination

Выводы

С помощью штыревых систем в цилиндрических резонаторах малых объемов и с помощью диэлектрических резонаторов возможно получить высокую напряженность электрического поля при малой мощности питания и на этой основе возможно получить высокоэффективный источник света с малой мощностью питания со световыми характеристиками близкими к спектральным характеристикам Солнца.

Возможные области применения:

- оУличное освещение
- оОсвещение студий, складов, торговых центров, выставок: высокий уровень освещенности позволяет выигрышно представлять товар, обеспечивает неискаженную цветопередачу, а низкий уровень УФ гарантирует сохранность красок и других чувствительных ингредиентов.
- оСпортивные мероприятия, например прожекторы стадионов.
- оИспользование в сельском хозяйстве: для выращивания овощей, фруктов, цветов особенно с учетом благоприятного спектра.
- оВозможность создания энергосберегающих бытовых ламп с хорошими спектральными характеристиками.

