Черенковский свет ШАЛ как инструмент изучения массового состава первичного космического излучения

Галкин В.И., Джатдоев Т.А.

Физический ф-т МГУ / НИИЯФ МГУ

06.04.2010

Особенности ЧС ШАЛ

Преимущества ЧС ШАЛ:

Малый черенковский угол (<1,5 град), т.е. свет сохраняет направление излучающей его частицы, что позволяет изучать пространственно-угловые характеристики ливневых частиц.

Число черенковских фотонов в десятки-сотни тысяч раз больше, чем число заряженных частиц ливня (N_{cherenk} ~ 3 × 10¹⁰, N_{charged} ~ 3 × 10⁵ для вертикального протонного ливня с энергией 10¹⁵ эВ, уровень наблюдения 1 км, 300-660 нм), что позволяет исследовать дифференциальные распределения ЧС.

Пробег до рассеяния оптического фотона в атмосфере может достигать многих километров, т.е. черенковский свет несет информацию обо всем ливне, в отличие от заряженных частиц.

Особенности ЧС ШАЛ

Недостатки ЧС ШАЛ:

Черенковские вспышки от ШАЛ можно регистрировать только безлунными безоблачными ночами, время наблюдения обычно составляет ~10% календарного времени.

Направленность ЧС ШАЛ не позволяет видеть ливень сбоку, т.е. на больших расстояниях R от оси до детектора.

Ultra high energy gamma-rays

Figure 5.1. Variation with depth in the terrestrial atmosphere of: (1) threshold energy for electrons to emit Cerenkov radiation; (2) intensity of emission; and (3) angle of emission of Cerenkov radiation. For electromagnetic cascades the depth region $100-400 \text{ g cm}^{-2}$ in the atmosphere is the most relevant.

Немного истории ЧС ШАЛ

 первая идея о черенковском фоне в атмосфере --- Блэкетт Blackett, P. M. S., Phys. Soc. London Gassiot Committee Report, 34 (1948)

 первая регистрация ШАЛ --- Гэлбрейт и Джелли Galbraith W., Jelley J. V., 1953, Nature, 171, 349

 первое измерение поперечного распределения --- Чудаков и Нестерова
Нестерова Н.М., Чудаков А.Е., О наблюдении черенковского излучения, сопровождающего широкие атмосферные ливни космических лучей, ЖЭТФ,28, 384 (1955)

 регистрация формы импульса --- Фомин и Христиансен, итальянцы
Фомин Ю.А., Христиансен Г.Б. О форме импульса черенковского излучения широкого атмосферного ливня, ЯФ, 1971, т. 14, ¦ 3, с. 642-646.

E Bohm et al 1977 J. Phys. A: Math. Gen. 10 441

Начало черенковской у-астрономии

Современная черенковская ү-астрономия очень высоких энергий (50 ГэВ – 1 ТэВ) основывается на форме углового распределения ЧС.

Характерная постановка задачи: выделить сигнал от точечного ү-источника с заданными угловыми координатами на преобладающем (в 10³-10⁴ раз большем) фоне событий от космических ядер.

В 60х годах прошлого века А.Е. Чудаков (*Chudakov, A.E., Dadykin, V.L., Zatsepin, V.I., and Nesterova, N.M., A Search for Photons with Energy 10¹³ eV from Local Sources of Cosmic Radiation, 1964. Proc. of P. N. Lebedev Phys. Inst., 26, 118*) искал ү-кванты с энергией ~1 ТэВ от Крабовидной туманности с помощью простого черенковского телескопа, но не нашел его.

Сигнал был выделен в 80х в обсерватории Whipple путем детального анализа углового распределения ЧС ШАЛ (Weekes, T. C., et al. 1989, ApJ, 342, 379) на основании реалистичных расчетов.

Возможности изучения продольного развития ШАЛ по ЧС

Продольное развитие ШАЛ

(каскадная кривая) определяется

 моделью ядерного взаимодействия
первичной энергией
массой первичной частицы

Чаще всего продольное развитие характеризуют положением максимума ливня Х_{тах}.

Черенковские меры продольного развития ШАЛ

Характеристики формы поперечного распределения ЧС ШАЛ dQ/dR, в частности, крутизна. R --- расстояние от точки падания оси ливня до детектора.

Характеристики формы временного распределения ЧС ШАЛ dQ/dT, в частности, полуширина. Т --- временная задержка чер.фотонов.

Характеристики формы углового распределения ЧС ШАЛ d²Q/dθ_xdθ_y, в частности, моменты распределения.

Обычный подход к изучению массового состава ПКЛ по ЧС ШАЛ: одновременная оценка Х_{тах} (по крутизне поперечного распределения или полуширине импульса) и Е₀ (по плотности фотонов на R=150-200 м).

Мировые данные по <lnA>

Данные по А в области колена различаются раз в 10.
Серьезно отличаются данные, полученные однотипными методами (например, по Ne—Nµ, по крутизне ФПР ЧС).

Вероятные причины большой неопределенности в <lnA>

 Большой (~10 раз) разброс мировых данных по среднему логарифму массового числа (простейшая мера массового состава) <lnA>(E₀) при маленьких декларируемых методических ошибках скорее всего говорит о переоцененности возможностей используемых методов.

 Дополнительную ошибку вносит использование промежуточного параметра X_{max}: от измеренных характеристик каскада переходят к X_{max}, теряя при этом часть информации о массе первичной частицы (продольное распределение ШАЛ не исчерпывается X_{max}), а затем определяют эту массу по X_{max}.

Эффективные подходы к проблеме массового состава ПКЛ

Анализ поперечного распределения ЧС ШАЛ (крутизна и другие характеристики формы): доказана возможность выделения известной доли чистых протонов с помощью черенковского телескопа типа СФЕРА-2, позволяющего провести детальный анализ формы поперечного распределения, и наземных установок с частой сеткой оптических детекторов.

Анализ пространственно-углового распределения ЧС ШАЛ (традиционные и вновь введенные характеристики формы углового распределения ЧС ШАЛ на разных расстояниях от оси до детектора): показано, что можно анализировать массы первичных частиц с высоким разрешением с помощью набора угловых телескопов с диаметром поля зрения не менее 20 град и размером пикселей 0,5-1,0 град при поддержке сетки быстрых оптических детекторов (формы и амплитуды) с шагом ~30 м.

Телескоп СФЕРА-2

СФЕРА-2 – черенковский телескоп, подвешиваемый к аэростату и регистрирующий свет, отраженный от заснеженной поверхности Земли. Зеркало диаметром 1,5м, R=94см, 109 ФЭУ в фокусе, полный угол зрения 52°, диафрагма перед зеркалом. Каждый ФЭУ видит участок поверхности диаметром 70м (для H=1км).

Искусственный ливень от протона, Е=10¹⁶ эВ

Так его увидит СФЕРА-2

🛧 Реальное событие, увиденное неполной камерой в марте 2008 г. (кадры по25нс)

Метод разделения первичных ядер по поперечному распределению ЧС ШАЛ

Метод выделения первичных протонов для СФЕРА-2:

регистрируем только протоны, лежащие правее правого края распределения Не

Выводы: - построенные критерии позволяют выделять известную долю потока протонов - доля составляет не менее 10% и зависит от модели

- граничное значение критерия от модели не зависит (зависит от критерия)

Угловое распределение ЧС ШАЛ от различных ядер

Искусственные угловые образы

Схема сбора света детектором

Угловые распределения излучения Вавилова-Черенкова двух индивидуальных ШАЛ с первичной энергией 10 PeV. По осям двумерной гистограммы отложены углы так, что центр поля зрения соответствует направлению в зенит. Верхний ряд- угловые распределения от первичного протона, нижний ряд- от ядра азота. Слева- угловые распределения на расстоянии 40 m от оси, в центре-120 m, справа- 200 m

R

Уровень наблюдения --- 1км

Особенности угловых распределений ЧС ШАЛ с энергиями 10¹⁵-10¹⁶ эВ

С точки зрения эксперимента ПУР ЧС ШАЛ можно представить как совокупность угловых образов одного и того же ливня (одновременно зарегистрированных несколькими угловыми телескопами)

Характерные угловые масштабы, на которых проявляются различия угловых образов ЧС ШАЛ от разных первичных ~0,5 град

Чем выше уровень наблюдения, тем больше угловые размеры образов (несколько градусов).

Большие угловые размеры образов требуют большого поля зрения телескопов: как минимум, 20 x 20 град при умеренном размере пиксела (от 0,5 до 1,0 град, в зависимости от уровня наблюдения)

Для эффективного использования угловых образов для определения А направление прихода ливня и точка падения оси должны быть известны с хорошей точностью (~0,1 град и ~нескольких метров, соответственно)

Для восстановления энергии, направления и положения оси естественно использовать пространственно-временное распределение ЧС, хотя направление может быть неплохо восстановлено и по самим угловым образам

черные кривыепротоны, красные кривыеядра азота, бөу= 1.5 град

Индивидуальные угловые распределения ЧС нескольких ШАЛ на расстоянии 100 м от оси, проинтегрированные вдоль короткой оси (по θ_y в интервале от -δθ_y до +δθ_y)

Новые параметры угловых образов

асимметрия k и крутизна n продольного профиля углового распределения ЧС ШАЛ

Разделение ядер по k и ŋ (асимметрии и крутизне продольного профиля углового образа)

По 50 событий от протонов, ядер гелия, азота, серы и железа с энергией 1 ПэВ показаны в координатах k и ŋ.

Даже по двум параметрам можно разделять протоны и азот с ошибкой ~10%.

Можно поставить задачу выделения некоторой доли чистых протонов от Не (как это было сделано по ФПР). Доля чистых протонов составляет ~38% против ~10% по ФПР, что говорит о большей чувствительности ФУР к А.

Результаты многомерной классификации 16 параметров= 4 признака (D,L,W,Conc) × 4 расстояния (R=50,100,150,200 м)

Истинная масса \rightarrow

Лзме- ренная		[p→p]	p→h			
масса	N=16	р	h	n	S	f
1HX	р	0.74	0.26	0.00	0.00	0.00
	h	0.00	0.90	0.06	0.00	0.00
	n	0.00	0.06	0.92	0.02	0.00
	S	0.00	0.00	0.04	0.90	0.06
	f	0.00	0.00	0.00	0.00	1.00
						s→f

E₀= 1 ПэВ. Ядра: p - протоны, h - гелий, n - азот, s - сера, f - железо. Статистика: 5 × 50 ливней Общие черты установки для изучения массового состава ПКЛ по пространственно-угловому распределению ЧС ШАЛ

Использование одновременно пространственно-углового и пространственно-временного распределений ЧС ШАЛ позволяет рассчитывать на максимальную разделимость событий от разных первичных ядер.

Телескопы с зеркалами ~2-4м² регистрируют угловое распределение света, быстрые детекторы определяют направление прихода, точку падения оси и энергию ливня и позволяют анализировать пространственное распределение ЧС

ЧС ШАЛ --- самая богатая информацией и многообещающая компонента ШАЛ с точки зрения анализа массового состава ПКЛ в диапазоне энергий 10¹⁴-10¹⁷ эВ

Использование предлагаемых подходов позволит существенно уточнить массовый состав ПКЛ в этом диапазоне

