Поляризационные эффекты в фоторождении мезонов



### Третьи Черенковские чтения

Москва, 06.04.2010 Г.М.Гуревич (ИЯИ РАН) 1) Experimental verification of the GDH sum rule

### Proposed in 1966

Prediction on the absorption of circularly polarized photons by longitudinally polarized hadrons



$$v_{thr} = \begin{cases} \pi \text{ production threshold (nucleon)} \\ \text{photodisin tegration threshold (nuclei)} \end{cases}$$

#### More detailed information on resonance properties and multipole amplitudes

by investigating the helicity structure of partial reaction channels

Main goals:

- single  $\pi^0$  production (D<sub>13</sub> (1520), F<sub>15</sub> (1680))
- $\circ$  η- production (S<sub>11</sub> (1535), D<sub>13</sub> (1520))
- double  $\pi^0$  production (D<sub>13</sub> (1520), P<sub>11</sub> (1440), P<sub>11</sub> (1710))

### MAINZ MICROTRON



### Glasgow-Mainz Photon Tagger



#### Polarisation transfer from electron to photon beam as a function of energy transfer. MAMI beam polarisation Pe ≈ 85%.



#### A2 DETECTOR SETUP

Because of its high-granularity and large acceptance the CB/TAPS setup is a suitable detector system for measurements of reactions with multi-photon final states like in  $\pi^0 \rightarrow 2\gamma$ ,  $\eta \rightarrow 2\gamma$  or  $\eta \rightarrow 3\pi^0 \rightarrow 6\gamma$ 





# The Frozen Spin Target



## **Dilution Cryostat**

Target insert along the beam axis
Fits in the geometry of the Crystal Ball detector: Horizontal
Superconducting holding coil integrated

> •Temperatures **<30 mK**

He3-He4 mixture. Dilution Cryostat **He3 line** 

•Separator (3K) and Evaporator (1.2K) precooling stages. Evaporator cryostat He4 line.

#### Loading of the target material into the cryostat





# Polarization procedure

### **Crystal Ball**



### Internal longitudinal Holding coil



### Internal transverse Holding coil



### Internal transverse Holding coil













# Transverse asymmetries T and F in $\pi^{O}$ and $\eta$ photoproduction

#### Physics motivation:

Measurement of the target asymmetry *T* and the double-polarisation observable *F* in order to investigate interference effects between the  $S_{11}(1535)$  and the  $D_{13}(1520)$  nucleon resonances and to determine the energy-dependent phase shift between *s* and *d* waves, which is not yet taken into account by isobar models (MAID, SAID) for  $\eta$  photoproduction.

#### **Equipment:**

A beam of circularly polarised photons, energy-tagged by the Glasgow-Mainz tagging system, in combination with a transversely polarised 'Frozen Spin' butanol target. The reaction products are detected using the Crystal Ball / TAPS  $4\pi$  photon spectrometer; the PID detector and the cylindrical wirechambers perform particle identication and track reconstruction for charged particles. The cross section for single meson production in case of a transversely polarised target and a circularly polarised photon beam

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{\mathrm{pol}} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \left[1 + p_x^{\mathrm{T}} p_{\mathrm{circ}}^{\gamma} F + p_y^{\mathrm{T}} T\right]$$

As the target asymmetry T is a single polarisation observables, it is accessible with only a polarised target and an unpolarised photon beam. However, using a circularly polarised photon beam does not affect this asymmetry but gives also access to the double-polarisation observable F. The target asymmetry T can be extracted integrating over both helicity states of the incoming circularly polarised photons, which eliminates any contributions from F. In contrast, the doublepolarisation observable F can be evaluated from the asymmetry for different beam helicity states for a fixed alignment in the azimuthal angle  $\emptyset$  of the transverse target polarisation.

# Two photon invariant mass spectrum for the Crystal Ball/TAPS detector setup. Both $\pi^0$ and $\eta$ mesons are seen.



$$\gamma p \rightarrow \pi^{o} p$$



#### Invariant mass cut: 110 – 170 Mev



#### from V.L. Kashevarov. 15th Crystal Ball@MAMI Collaboration Meeting, Mainz,8-10 March 2010



1 pion

pion + proton



 $\gamma p \rightarrow \pi^{o} p$ 



250 – 300 MeV

300 – 400 MeV

400 – 500 MeV

500 - 600 MeV

from V.L. Kashevarov. 15th Crystal Ball@MAMI Collaboration Meeting, Mainz,8-10 March 2010

### $\gamma p \rightarrow \pi^{0} p$ *Double polarization observable F (preliminary)*



from V.L. Kashevarov. 15th Crystal Ball@MAMI Collaboration Meeting, Mainz,8-10 March 2010

### ЗАКЛЮЧЕНИЕ

- MAMI C: циркулярно и линейно поляризованные меченые фотоны с энергией до 1,5 ГэВ
- FST: продольно и поперечно поляризованные протоны и дейтроны
- Возможны любые комбинации поляризаций пучка и мишени
- Детектор Crystal Ball/TAPS: измерения продуктов реакции в 4π геометрии
- РАС-2009: из 14 проектов 9 проекты дважды поляризационных экспериментов