

Электромагнитные взаимодействия тяжелых ионов

П.И. Зарубин (ОИЯИ)

Electromagnetic dissociation of relativistic ¹⁸O nuclei

D. L. Olson and B. L. Berman

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

D. E. Greiner, H. H. Heckman, P. J. Lindstrom, and G. D. Westfall Lawrence Berkeley Laboratory, University of California, Berkeley, California

PHYSICAL REVIEW C 72, 048801 (2005)

Multifragmentation reactions and properties of stellar matter at subnuclear densities

A. S. Botvina1 and I. N. Mishustin2,3

¹Institute for Nuclear Research, Russian Academy of Sciences, RU-117312 Moscow, Russia
²Frankfurt Institute for Advanced Studies, J.W. Goethe University, D-60438 Frankfurt am Main, Germany
³Kurchatov Institute, Russian Research Center, RU-123182 Moscow, Russia
(Received 20 June 2005; published 24 October 2005)

We point out the similarity of thermodynamic conditions reached in nuclear multifragmentation and in supernova explosions. We show that a statistical approach previously applied for nuclear multifragmentation reactions can also be used to describe the electroneutral stellar matter. Then properties of hot unstable nuclei extracted from the analysis of multifragmentation data can be used to determine a realistic nuclear composition of hot supernova matter.

VOLUME 41, NUMBER 6

Electromagnetic dissociation of relativistic heavy ions

W. J. Llope and P. Braun-Munzinger

Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794

In particular, electromagnetic excitation of modes based on the nuclear giant dipole resonance (GDR) may lead to very exotic final states^{1,2} in which neutrons oscillate against protons with a very large amplitude. The existence and decay mechanisms of such states is unknown present. However, this electromagnetic process at efficiently excites collective states so that little or no temperature is produced during the very short time scale (of order 1 fm/c) of the collision. One may thus hope to use this type of reaction to search for fragile, weakly bound exotic states such as multineutron clusters which might be formed in the decay of the possibly strongly excited multi-GDR states.

VOLUME 41, NUMBER 6

Electromagnetic dissociation of relativistic heavy ions

W. J. Llope and P. Braun-Munzinger

Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (Received 12 January 1990)

A framework is developed for the quantitative analysis of the electromagnetic dissociation of relativistic nuclei. This includes treatment of multiple excitations of the giant dipole resonance, coupled with calculations of the fragmentation probabilities in the framework of the statistical model.

FIG. 3. The total differential Coulomb excitation cross sections for ²⁸Si on ²⁰⁸Pb at $E_{lab}/A = 14.6$ GeV for the first-, second-, and third-order processes.

Dubna: Relativistic Nuclei

Фотография взаимодействия ядра ¹²С с импульсом 4.5А ГэВ/с в пропановой пузырьковой камере (ЛВЭ ОИЯИ, 1974 г.).

Photo of human hair superposed on nuclear star induced by relativistic sulphur nuclei in nuclear track emulsion Physics of Atomic Nuclei, Vol. 58, No. 11, 1995, pp. 1905 - 1910. Translated from Yadernaya Fizika, Vol. 58, No. 11, 1995, pp. 2014 - 2020. Original Russian Text Copyright © 1995 by Belaga, Benjaza, Rusakova, Salamov, Chernov.

ELEMENTARY PARTICLES AND FIELDS Experiment

Coherent Dissociation ¹²C → 3α in Lead-Enriched Emulsion at 4.5 GeV/c per Nucleon

V. V. Belaga, A. A. Benjaza¹⁾, V. V. Rusakova, J. A. Salamov²⁾, and G. M. Chernov

≈ 1 % of Inelastic Interactions

Care and

Physics of Atomic Nuclei, Vol. 62, No. 8, 1999, pp. 1378-1387. Translated from Yadernaya Fizika, Vol. 62, No. 8, 1999, pp. 1461-1471. Friginal Russian Text Copyright © 1999 by Adamovich, Bogdanov, Koncrov, Larionova, Peresadko, Plyushchev, Solovyeva, Kharlamov.

> ELEMENTARY PARTICLES AND FIELDS Experiment

Interactions of Relativistic ⁶Li Nuclei with Photoemulsion Nuclei

M. I. Adamovich, V. G. Bogdanov¹⁾, I. A. Konorov, V. G. Larionova, N. G. Peresadko, V. A. Plyushchev¹⁾, Z. I. Solovyeva^{1)†}, and S. P. Kharlamov

Number of events of ⁶Li coherent dissociation

	Number	of events	
Dissociation channel	without the excitation of the target nucleus $(N_h = 0)$	with the excitation of the target nucleus $(N_h \neq 0)$	······································
4 He + d	23	24	
3 He + t	4	1	·
t + d + p	4	3	• •
d + d + d	0	2	

Роль ядерного и электромагнитного взаимодействий в когерентной диссоциации релятивистского ядра ⁷Li по каналу ³H + ⁴He

Н. Г. Пересадько, В. Н. Фетисов¹⁾, Ю. А. Александров, С. Г. Герасимов, В. А. Дронов, В. Г. Ларионова, Е. И. Тамм, С. П. Харламов

2He+H (6 MeV) - 73% Li+He (4.5 MeV) - 12% ⁹Be+p (6.6 MeV) - 2%

ISSN 1063-7788, Physics of Atomic Nuclei, 2009, Vol. 72, No. 4, pp. 690-701. © Pleiades Publishing, Ltd., 2009.

Original Russian Text © R. Stanoeva, D.A. Artemenkov, V. Bradnova, S. Vokál, L.A. Goncharova, P.I. Zarubin, I.G. Zarubina, N.A. Kachalova, A.D. Kovalenko, D.O. Krivenkov, A.I. Malakhov, G.I. Orlova, N.G. Peresadko, N.G. Polukhina, P.A. Rukoyatkin, V.V. Rusakova, M. Haiduc, S.P. Kharlamov, M.M. Chernyavsky, T.V. Shchedrina, 2009, published in Yadernaya Fizika, 2009, Vol. 72, No. 4, pp. 731–742.

ELEMENTARY PARTICLES AND FIELDS Experiment

Electromagnetic Dissociation of Relativistic ⁸B Nuclei in Nuclear Track Emulsion

R. Stanoeva^{1),2)}, D. A. Artemenkov¹⁾, V. Bradnova¹⁾, S. Vokál^{1),3)},

L. A. Goncharova⁴), P. I. Zarubin¹)*, I. G. Zarubina¹), N. A. Kachalova¹),

A. D. Kovalenko¹), D. O. Krivenkov¹), A. I. Malakhov¹), G. I. Orlova⁴),

N. G. Peresadko⁴), N. G. Polukhina⁴), P. A. Rukoyatkin¹), V. V. Rusakova¹),

M. Haiduc⁵⁾, S. P. Kharlamov⁴⁾, M. M. Chernyavsky⁴⁾, and T. V. Shchedrina¹⁾

Fig. 1. Scheme of the electromagnetic dissociation of a relativistic ⁸B nucleus in the field of a silver nucleus: (*a*) approach of the nuclei at an impact parameter *b*; (*b*) quasireal-photon absorption by the ⁸B nucleus; and (*c*) dissociation into two fragments, *p* and ⁷Be.

FIG. 1: Example of peripheral interaction of a 1.2 A GeV ${}^{8}B \rightarrow {}^{7}Be+p$ in a nuclear track emulsion ("white" star). The interaction vertex (indicated as **IV**) and nuclear fragment tracks (**H** and **Be**) in a narrow angular cone are seen on the upper and bottom microphotograph.

$^{8}B \rightarrow 2He + H$

	Q _{min} (¹⁰ B),	N _{ws} (10B)	% (¹⁰ B)	Q _{min} (⁸ B),	N _{ws} (⁸ B)	9%0 (8B)
	МэВ			МэВ		
2He+H	6.0	30	73	1.724	14	27
He+3H	25	5	12	8.6	12	23
Be+H	6.6	1	2	0.138	25	48
В		-			1	2
Li+He	4.5	5	13	3.7	_	_

PHYSICAL REVIEW C, VOLUME 61, 054606

Systematic study of ⁸B breakup cross sections

Henning Esbensen Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

FIG. 8. One-proton removal cross section (solid curve) for ${}^{8}B$ on a Pb target, as a function of the beam energy. The dashed curves show the contributions from stripping, nuclear induced diffraction, and the *E*1 and *E*2 Coulomb dissociation. The two data points are from Ref. [8].

Few Body Syst (2008) 44: 273-276 DOI 10.1007/s00601-008-0307-6 Printed in The Netherlands

Detailed study of relativistic ${}^9Be \rightarrow 2\alpha$ fragmentation in peripheral collisions in a nuclear track emulsion*

D. A. Artemenkov**, D. O. Krivenkov, T. V. Shchedrina, R. Stanoeva, P. I. Zarubin

"white" stars

+1.7 MeV

stars with target proton like recoil (g-particle)

stars with heavy fragment of target nucleus (b-particle)

$${}^{9}Be(3/2^{-})\rangle = \varpi_{0^{+}} \left| \left[{}^{8}Be(0^{+}) \otimes n_{p(3/2)} \right]_{3/2^{-}} \right\rangle + \varpi_{2^{+}} \left| \left[{}^{8}Be(2^{+}) \otimes n_{p(3/2)} \right]_{3/2^{-}} \right\rangle \right|_{3/2^{-}} \right|_{3/2^{-}}$$

где $\omega_{0+} = 0.535$ и $\omega_{2+} = 0.465$ – весовые коэффициенты.

1. Y. L. Parfenova and Ch. Leclercq-Willain, «Hyperfine anomaly in Be isotopes and neutron spatial distribution: A three-cluster model for ⁹Be», Phys. Rev. C 72, 054304 (2005).

2. Y. L. Parfenova and Ch. Leclercq-Willain, «Hyperfine anomaly in Be isotopes in the cluster model and the neutron spatial distribution», Phys. Rev. C 72, 024312(2005).

Доли событий Θ_{0+} и Θ_{2+} составляют 0.56 ± 0.04 и 0.44 ± 0.04 . Эти величины демонстрируют соответствие весам 0^+ и 2^+ состояний, принятым в теоретических работах [1,2]. Они указывают присутствие этих состояний как компонент основного состояния ядра ⁹Be.

Резюме

Впервые выполнено исследование структуры $2\alpha + n$ ядра ⁹*Be* методом релятивистской фрагментации. В основном, фрагментация ⁹*Be* $\rightarrow 2\alpha$ (81 %) протекает через состояния 0^+ и 2^+ ядра ⁸*Be* с близкими вероятностями.

Для когерентной диссоциации ${}^{9}Be \rightarrow 2\alpha$ на тяжелых ядрах наблюдается уменьшение среднего значения поперечного импульса P_{Tsum} α -пары по сравнению с взаимодействиями на протонах мишени.

Для основной части событий когерентной диссоциации распределение величин суммарного поперечного импульса *P*_{Tsum} пар α-частиц, может быть объяснено в рамках статистической модели недостающим поперечным импульсом нейтрона – фрагмента ядра ⁹Be.

Отсутствует значимое различие распределений по P_{Tsum} для событий когерентной диссоциации через состояния 0^+ и 2^+ ядра ⁸Be. Это обстоятельство указывает на схожий механизм возникновения α -пар и их одновременное присутствие этих состояний с близкими весами в основном состоянии ядра ⁹Be.

В целом, представленные данные можно рассматривать как доказательство того, что в структуре ядра ⁹Be с высокой вероятностью имеется кор в виде двух состояний ядра ⁸Be и внешнего нейтрона.

Полученные результаты согласуются с теоретическими работами по описанию структуры ядра ⁹*Be*, предполагающими присутствие в его основном состоянии состояния *0*⁺ и 2⁺ ядра ⁸*Be* приблизительно с одинаковыми весами.

1.2A GeV ⁹Be 3.22A GeV ²²Ne 10.7A GeV ¹⁹⁷Au

Beta Decay of a C⁹ Nucleus*

M. S. SWAMI, J. SCHNEPS, AND W. F. FRY Department of Physics, University of Wisconsin, Madison, Wisconsin (Received June 29, 1956)

FIG. 1. A photograph of an event interpreted as the beta decay of C⁹. The C⁹ nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron (tracks 1, 2, 3, and 4, respectively).

Hammer tracks in cosmic ray events:

⁸Be produced in β-delayed decay of stopped ⁸B and ⁸Li

Distribution of 160 "white" stars N_{ws} in charge configurations $\sum Z_{fr}$ ⁹C exposure Z_{fr} N_{ws} $\sum Z_{fr}$ _ $7 (Z_{\rm pr} = 7)$ _ 6 (Z_{pr} 6 (Z_m _ -_ _ _ - $5 (Z_{pr} = 5)$ -_ - $5 (Z_{pr} = 5)$ -_ -_ _ _

-

Polar angles θ for doubly charged fragments in the "white" stars $C \rightarrow 3He$

Opening angles Θ_{2He} between fragments in the "white" stars $C \rightarrow 3He$

ISSN 1063-7788, Physics of Atomic Nuclei, 2007, Vol. 70, No. 7, pp. 1226–1229. © Pleiades Publishing, Ltd., 2007. Original Russian Text © N.G. Peresadko, Yu.A. Aleksandrov, V. Bradnova, S. Vokál, S.G. Gerasimov, V.A. Dronov, P.I. Zarubin, I.G. Zarubina, A.D. Kovalenko, V.G. Larionova, A.I. Malakhov, P.A. Rukoyatkin, V.V. Rusakova, S.P. Kharlamov, V.N. Fetisov, 2007, published in Yadernaya Fizika, 2007, Vol. 70, No. 7, pp. 1266–1270.

ELEMENTARY PARTICLES AND FIELDS =

Fragmentation Channels of Relativistic ⁷Be Nuclei in Peripheral Interactions

N. G. Peresadko¹⁾, Yu. A. Aleksandrov¹⁾, V. Bradnova²⁾, S. Vokál²⁾, S. G. Gerasimov¹⁾, V. A. Dronov¹⁾, P. I. Zarubin²⁾, I. G. Zarubina²⁾, A. D. Kovalenko²⁾, V. G. Larionova^{†1)}, A. I. Malakhov²⁾, P. A. Rukoyatkin²⁾, V. V. Rusakova²⁾, S. P. Kharlamov¹⁾, and V. N. Fetisov¹⁾

MeV	Channel	$2\mathrm{He}$	2He	He+2H	He+2H	$4\mathrm{H}$	$4\mathrm{H}$	Li+H	Li+H	Sum
		$n_b = 0$	$\mathbf{n}_b > 0$	$\mathbf{n}_{b}=0$	$\mathbf{n}_b > 0$	$n_b = 0$	$n_b > 0$	$n_b = 0$	$n_b > 0$	
1.6	$^{3}\mathrm{He}\mathrm{+}^{4}\mathrm{He}$	30	11							41
	$^{3}\mathrm{He}+^{3}\mathrm{He}$	11	7							18
	$^{4}\mathrm{He}\mathrm{+2p}$			13	9		C	0		22
6.9	$^{4}\mathrm{He+d+p}$			10	5			ě,		15
	$^{3}\mathrm{He}\mathrm{+2p}$			9	9					18
	$^{3}\mathrm{He+d+p}$			8	10					18
25.3	$^{3}\mathrm{He}\mathrm{+2d}$			1						1
21.2	$^{3}\mathrm{He+t+p}$			1						1
	$_{3p+d}$					2				2
	2p+2d					1				1
5.6	⁶ Li+p							9	3	12
	Sum	41	18	42	33	2	1	9	3	149

TABLE III: $^7\mathrm{Be}$ fragmentation channel (number of events)

⁹Be ¹⁴N

Θ, ×10⁻³ rad

400 450 500 Q_{2α}, keV

⁹Be ¹⁴N

6

0

50

100

150

200

250

300

350

NUCLOTRON: 2.9A GeV /c¹⁴N

Τ_α: 0.05-2 MeV

The detection of such "ultracold" 5α states is a serious argument in favor of the reality of the phase transition of α clusterized nuclei to the dilute Bose gas of α -particles. It gives a special motivation to explore lighter $n\alpha$ systems produced as potential "building blocks" of the dilute α particle Bose gas.

λ: 10-1 fm

3.65A GeV²⁰Ne 2+2+2+2+2

WILLING A COMPANY STORY STORY AND AND AND

n _b	0	0	1	2	3	>3	
ng	0	1	0	0	0	0	
F+H	26 (19.5)	9 (15.0)	13 (44.8)	2	121	1	
O + He	54 (40.6)	19 (31.7)	2 (6.9)		1	1	
O + 2H	12 (9.0)	7 (11.7)	-	5	479.	10.70	
N + He + H	12 (9.0)	7 (11.7)	4 (13.8)	1	170		
N + 3H	3 (2.3)	3 (5.0)	÷		120	-	
C + 2He	5 (3.8)	3 (5.0)	3 (10.3)	1		-	
C + 2He + 2H	5 (3.8)	3 (5.0)	3 (10.3)	-	(+)		
C + 4H	2 (1.0)	×	-	-	-	-	
B+Li+H	1 (0.8)	<u> </u>		¥	-	2 4	
B+2He+H	2 (1.5)	1 (1.7)		1 2	1	12	
B + He + 3H	2 (1.5)	1 (1.7)	-	÷	-	-	
B + 5H	1 (0.8)	E	1 (3.4)	2	-	-	
2Be + 2H		1 (1.7)	-		1	879	
Be + Li + 3H	1 (0.8)		22	No 3	· · · · · /		7
Be + 3He	2 (1.5)	-	4 0 0 -	-	• 4 4F	JUC	V
Be + He + 4H	1 (0.8)	4	100 In	elas	stic I	ntera	actions
Li + 3He + H	5 -	1 (1.7)	-	2	-	8 2	
5He	3 (2.3)	-	1 (3.4)	2		1	
4He + 2H	1 (0.8)	5 (8.3)	2 (6.9)	-	121	12	

$Z_{\rm fr} > 3$	Ν	С	С	B	B	Be	Be	-	-
N _{Z=1}	1	-	2	3	1	-	2	-	2
N _{Z=2}	-	1		-	1	2	1	4	3
Nev	18	21	7	2	10	1	1	9	3