Исследование нейтринных осцилляций на ускорителях

Ю.Г. Куденко, М.М. Хабибуллин ияи ран

IV Черенковские чтения, ФИАН, Москва 12 апреля 2011

Outline

- Neutrino oscillation parameters
- Short-baseline experiments: LSND; MiniBooNE - anomalies
- First generation of Long-baseline experiments: K2K; MINOS; OPERA – results
- New generation of Long-baseline experiments: T2K – first results; NOvA
- Conclusions

New Physics

- Neutrino oscillations discovered in atmospheric, solar, reactor and accelerator experiments -> new physics beyond Standard Model (SM)
- Accurate measurements of the oscillation parameters are necessary to formulate/select Extensions of SM

Neutrino Mixing

Flavor states ≠ Mass states

v mixing: 3×3 unitary matrix U_{PMNS} (PMNS= Pontecorvo-Maki-Nakagawa-Sakata)

$$\begin{aligned} \begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = U_{PMNS} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} & c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \sin\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \sin\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij} \\ c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij} \\ c_{ij} = \cos\theta_$$

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Known and unknown parameters

- (1,2): $\theta_{12} \approx 34^{\circ}$, $\Delta m_{12}^2 \approx 7.6 \times 10^{-5} \text{ eV}^2$ (solar + reactor)
- (2,3): $\theta_{23} \approx 45^{\circ}$, $\Delta m_{23}^2 \approx 2.3 \times 10^{-3} \text{ eV}^2$ (atm. + accelerator)
- (1,3): θ₁₃ < 11° only upper limit (reactor(CHOOZ) + accelerator)
- CP-phase δ and sign of Δm^2

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Oscillation Probability at a distance L

12.04.2011 IV Черенковские чтения, ФИАН, Москва

How to measure the oscillation parameters

Prediction (theory + MC):

Experiment:

12.04.2011 IV Черенковские чтения, ФИАН, Москва

The main accelerator v-experiments

Experim ent	Run	Proton Energy	Proton Target	<e<sub>v></e<sub>	L (Baseline)	Det. Tech.	Near/Far Det. Mass	Goal	
K2K*	1999- 2004	12 GeV	Al 2 horns	1.3 GeV	250 km	Water <mark>Ch</mark>	1kt / 50 kt	$\nu_{\mu} \rightarrow \nu_{\mu}$	
MINOS	2005-	120 GeV	C 2 horns	3 GeV 9 GeV	735 km	Fe+Sci.	≈1kt / 5.4 kt	$ u_{\mu} \rightarrow \nu_{\mu} $ +anti- ν_{μ}	
OPERA	2008-	400 GeV	C 1 horn	17 GeV	732 km	Pb+Emul +Track.	1.25 kt	$\nu_{\mu} \rightarrow \nu_{\tau}$	- a
т2К*	2010-	30 GeV	C 3 horns	0.6 GeV	295 km OA=2.5 °	Sci./Wat er <mark>Ch</mark>	2kt / 50 kt	$\nu_{\mu} \rightarrow \nu_{e}$	
ΝΟνΑ	2013?	120 GeV	C 2 horns	2 GeV	810 km OA=0.8°	Liq.Sci.+ WLS	0.22kt / 14 kt	$\nu_{\mu} \rightarrow \nu_{e}$	
LSND*	1993- 1998	798 MeV	Water/ Metals	20-53 MeV	30 m	(CH ₂) Ch+Sci.	167 t	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	
MiniBo oNE*	2002-	8 GeV	Be 1 horn	600 MeV	541 m	(CH ₂) <mark>Ch</mark> +Sci.	800 t	$ \begin{array}{c} \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \\ \nu_{\mu} \rightarrow \nu_{e} \end{array} $	<u></u>

* - Cherenkov Light used (Ch)

LBL=Long Baseline; SBL= Short Baseline OA= Off-Axis

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Short-Baseline experiment: LSND (Liquid Scintillator Neutrino Detector)

- Los Alamos, USA. 1993-1998.
- anti-ν_μ (from μ⁺-decays at rest)
- Detector: 167 t of mineral oil (CH₂)
- L=30 m / E=20-53 MeV
- Excess of anti- v_e events: 87.9±22.4 ± 6.0 (3.8 σ)
- Best fit: Δm²= <u>0.2-10 eV²</u> (very large!)

sin²(2θ) ~ 0.001-0.04 (includes constraints) *Phys.Rev. D64, 11207, 2001*

- KARMEN (UK): no confirmation
- To confirm/refute: MiniBooNE (see next slide)

Short-Baseline experiment: MiniBooNE (Mini-Booster Neutrino Experiment)

- FermiLab, IL, USA.
- 2002-...
- v_{μ} and anti- v_{μ}
- Detector: 800 t of mineral oil (CH₂)
- L=541 m / E=200-1450 MeV
- Goal: confirm/refute LSND results

 Target Hall
 Drawing not to scale
 Detector Hall
 Detector Hall

 B GeV protons
 Decay Region
 541 m
 12.2 m

 B GeV protons
 Dorn & target
 50 m
 541 m
 12.2 m

 Primary Beam
 Secondary Beam
 Neutrino Beam

 ineral Oil (CH2)
 The data are consistent with anti-v_µ → anti-v_e oscillations in the 0.1 to 1.0 eV² Am² range

and with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory."

PRL, 105, 181801 (2010)

Mode	ΡΟΤ	Excess in E=475-1250 MeV
$v_{\mu} \rightarrow v_{e}$	6.46×10 ²⁰	22.1 ±35.7
anti- $V_{\mu} \rightarrow anti-V_{e}$	5.66×10 ²⁰	20.9 ± 14.0 (1.5 σ)

Possible interpretations of LSND/MiniBooNE anomalies

• Unexplained excess in v-mode for E=(200-475) MeV : **128.8** ± **20.4** ± **38.3** (2.9 σ). PRL, 102, 101802 (2009)

Non-oscillation

Coupling between γ , Z and ω

 $v + N \rightarrow v + N + \gamma$ $\sigma \sim 2.6 \times 10^{-41} (E_v/\text{GeV})^6 (g_o/10)^4 \text{ cm}^2$

С.С.Герштейн, Ю.Я.Комаченко, М.Ю.Хлопов, ЯФ 33 (1981) 1597 J.Harvey, C.Hill, R.Hill, arXiv:0708.1281 R.Hill, arXiv:0905.0291; Jenkins, Goldman, arXiv:0906.0984 3+1 D.Meloni etal., arXiv:1007.2419

Oscillation

 $3 + 1 \mod 1$ M.Maltoni, T.Schwetz, arXiv:0051.0107 3 + 2 or 3 + 3 models

M.Maltoni, T.Schwetz, arXiv:0051.0107 A.Nelson, J.Walsh, arXiv:0711.1363

Extra dimensions

H.Pas, S.Pakvasa, T.Weiler, hep-ph/0504096 (predicted low-energy excess)

Lorentz violation

T.Katori, A.Kostelecky, R.Tayloe, hep-ph/0606154

12.04.2011 IV Черенковские чтения, ФИАН, Москва

VSBL Electron Neutrino Disappearance C.Giunti, M.Laveder, arXiv: 0902:1992

Heavy Sterile Neutrino Decay

S.Gninenko, arXiv:0902.3802

First Long-Baseline experiment: **K2K** (KEK to Kamioka)

- KEK: Tsukuba, Ibaraki pref. Kamioka: Gifu pref., Japan.
- 1999-2001; 2003-2004
- $\nu_{\mu} \rightarrow \nu_{\mu}$
- Near Detector: 1 kt water Cherenkov
- Far Detector: 50 kt water Cherenkov
 L=250 km / <E>=1.3 GeV

• Data collected: 0.9xE20 POT

Phys.Rev., D74, 072003, 2006

Confirmation of SK result: oscillations with atmospheric neutrino parameters

Null-oscillation is excluded at 4.3σ:

112 observed 158.1 $^{+9.2}_{-8.6}$ expected (null oscillation)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

MINOS

(Main Injector Neutrino Oscillation Search)

- FermiLab, IL ->Soudan mine, MN, USA
- 2005-...
- + ν_{μ} and anti- ν_{μ}
- Near Detector: 980 t, same as Far Det. L (near)=1km
- Far Detector: 5.4 kt, magnetized Fe/Sci Tracker/Calorimeter
 L=735 km / E=3 GeV

Goal: Precise study of "atmospheric" neutrino oscillations, using the NuMI beam and two detectors

Ю.Г. Куденко, М.М. Хабибуллин ИЯИ РАН

Scintillator

orientations

MINOS: $v_{\mu} \rightarrow v_{\mu}$ (disappearance)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

MINOS: anti- v_{μ} disappearance

Expected $N_{exp} = 156$; Observed $N_{obs} = 97$ (6.3 σ excl. no oscillation)

"The probability that the underlying v_{μ} and $anti-v_{\mu}$ oscillation parameters are identical is 2.0%." v-mode: $|\Delta m^2|=2.32^{+0.12}_{-0.08} \times 10^{-3} eV^2$; $\sin^2(2\theta) > 0.90$ (90% C.L.) anti-v-mode: $|\Delta m^2|=(3.36^{+0.46}_{-0.40}(stat.) \pm 0.06(syst.)) \times 10^{-3} eV^2$; $\sin^2(2\theta) = 0.86^{+0.11}_{-0.12}(stat.) \pm 0.01(syst.)$

ArXiv:1104.0344 (2011)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

OPERA

(Oscillation Project with Emulsion-tRacking Apparatus)

Gran-Sasso, Italy

- 2008-...
- $v_{\mu} \rightarrow v_{\tau}$ (v_{τ} -direct search)
- Detector: Lead/Emulsion Hybrid + Sci.+...
- L = 732 km / <E> = 17 GeV

Hybrid Detector:

- •Two supermodules Target Mass ~1.25 ktons
- 2 Magnetic spectrometers with RPC & Drift tubes
- 2 x [31 Target Tracker planes and Target Walls]
- "ECC bricks" (56 Pb/57 Emulsion layers): 150000
- 12 M Emulsion plates (thin double-coated)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

OPERA: first v_{τ} candidate

Phys. Lett. B 691 (2010) 138; arXiv:1006.1623 [hep-ex]

Accumulated in 2008-10 \sim **9.34 x 10¹⁹ POT** Analysis of data with **1.85 x 10¹⁹ POT**

- Expected number of ν_{τ} events 0.54 \pm 013 (syst)
- Probability that this event due to background fluctuation 4.5%
- Significance of observation 2.01σ
- 20 charm decays observed
- expectation from MC 16.0 \pm 2.9

decay $\tau^{-} \rightarrow h^{-}(n\pi^{0})v_{\tau}$

 v_{τ} interaction point

12.04.2011 IV Черенковские чтения, ФИАН, Москва

T2K (Tokai to Kamioka)

- J-PARC, Tokai-mura, Ibaraki pref. -> Kamioka, Gifu pref., Japan (J-PARC= Japan Proton Accelerator Research Complex)
- Near det-s (280 m) off-axis: FGD, TPC, POD, ECAL, SMRD + on-axis: INGRID
- Far detector: Super-Kamiokande. L = 295 km; <E> = 0.6 GeV
- Goals: Searches for $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance, θ_{13} =x10 better than CHOOZ) Precise measurement of $v_{\mu} \rightarrow v_{\mu}$ (v_{μ} disappearance)
 - 2010-... 12.04.2011 IV Черенковские чтения, ФИАН, Москва

T2K off-axis beam

T2K:

145 kW (plan:750 kW) 30 GeV proton beam Quasi-monochromatic ν_{μ} (95%) beam ~0.4% v_e at peak energy ~600 MeV

12.04.2011 IV Черенковские чтения, ФИАН, Москва

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Near Detectors

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Far Detector: SK-IV

- 50kt Water Cherenkov detector (Fiducial 22.5kt)
 @ underground (2700 m water equivalent)
- 20' ID PMT×11,129: 40% Photo coverage + 8' OD PMT×1885 :
- Dead-time less DAQ system (2008~)
- Good performance for sub-GeV v detection
 - 1^{st} oscillation maximum : $Ev \sim 0.6 \text{GeV}$ at SK position.
 - Charged current quasi-elastic (CC QE) interaction is dominant process.
 - Good e / μ separation
 - Energy reconstruction: $\Delta E/E \sim 10\%$ ($\leftarrow 2$ -body kinematics)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Delivered proton#

Accumulated # of protons so far

T2K physics run: 2010, Jan[~]
 → Before 11/Mar/11: ~9.3×10¹³[p/pulse], 3.04[s] cycle
 → Beam power = 145kW

Integrated POT reaches 1.45×10^{20} .

- Physics results shown:
 - Analysis of the data taken from Jan. 2010 to Jun. 2010 (3.23x10¹⁹ POT)

12.04.2011 IV Черенковские чтения, ФИАН, Москва

T2K event selection

"good beam spill" accepted by SK = 3.23x10¹⁹ POT

			MC		
		Data	No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} \text{ (eV}^2\text{)}$ $\sin^2 2\theta_{23} = 1.0$ $\sin^2 2\theta_{13} = 0.0$	
	Fully-Contained	33	54.5	24.6	
	Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7	
	Single-ring μ-like (P _μ >200MeV/c)	8	24.5 ±3.9	7.1 ±1.3	
	Single-ring e-like (P _e >100MeV/c)	2	1.5 ±0.7	1.3 ±0.6	
	Multi-ring	13	10.2	8.0	

T2K v_e appearance: 1 candidate

ИЯИ РАН

- # of decay electron $(\mu \rightarrow e + v_e) = 0$ - Reject v_{μ} contamination : 1 event rejected.
- Reconstructed invariant mass assuming 2γ rings exist <105MeV
 - Reject π^0

IV Черенковские чтения,

ФИАН, Москва

• Reconstructed v energy < 1250 MeV

Oscillation maximum at ~600 MeV

- $\mathbf{8} \mathbf{v}_{\mu}$ events observed (null oscillation: 24 expected).
- # of events agree with MINOS / SK measurements.

Earthquake in Japan

• 14:46 JST (08:46 MSK), March 11th, 2011, Japan experienced a severe earthquake followed by a tsunami

• No reported injuries to members of the T2K collaboration or JPARC employees

• All foreign collaborators have returned home safely

- The tsunami did not reach J-PARC
- Inspection of the lab is ongoing

• Priority is to restore water, power, and gas systems

• SK (Kamioka) is OK and running (for solar/atm/supernovae)

ΝΟνΑ

(NuMI Off-axis v_e Appearance)

- FermiLab, IL -> Ash River, MN, USA
- 2013 ...
- Goal: v_e appearance, mass hierarchy
- Off-axis = 0.8° .
- Near detector: 0.22 kt @ 1 km
- Far detector: 14 kt. Both: PVC filled with mineral oil + WLS fiber -> APD
- L = 810 km / <E> = 2 GeV .

Active element: Liquid scintillator U-shaped WLS fiber

Scintillator cells 3.9 x 6.0 x 1560 cm³ Read out from one side per plane with APDs

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Ю.Г. Куденко, М.М. Хабибуллин ИЯИ РАН

typical charged particle

path

Conclusion

- Neutrino oscillations physics beyond the Standard Model
- Accelerator experiments: very productive and provide exciting results
- MINOS, OPERA, MiniBooNE successfully taking data
- **T2K** running for physics since January 2010
- Main goal for LBL accelerator experiments: θ_{13} key parameters which determines the future of these experiments
- Non-zero θ_{13} will give us a chance to measure mass hierarchy and to probe **CP violation** in lepton sector
- LSND/MiniBooNE: Anomalies -> sterile neutrinos?
- MINOS: ν and anti- ν results show some tension

New results are coming soon!

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Backup Slides

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Accelerators as Neutrino sources

General idea (since 1960s):

$$p \rightarrow A \rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\rightarrow \pi^{-} \rightarrow \mu^{-} + \text{anti-}\nu_{\mu}$$

Progress in Accelerator technology:

- High intensity: ~10¹³-10¹⁴ p/spill
 Beam power: 100-400 kW (plan: 700-800 kW)
- Proton Beam Timing: spill length/cycle: ~few μs/~few s
 + spill micro-structure= 2-9 bunches
 - High purity: $v_{\mu} 92 \div 98\%$; $v_{e} \le 1\%$
- Off-axis neutrinos

Appearance Probability (detailed)

MiniBooNE $v_{\mu} \rightarrow$

PRL 98:231801, 2007 PRL 102:101802,2009

Data

6.46 x 10²⁰ POT

No v_e excess in oscillation signal region $E_v > 475 \text{ MeV}$

12.04.2011 IV Черенковские чтения, ФИАН, Москва

MiniBooNE anti- v_{μ} \rightarrow anti- v_{e}

PRL, 105, 181801 (2010) 5.66 x 10²⁰ POT

"The data are consistent with anti- $v_{\mu} \rightarrow \text{anti-}v_{e}$ oscillations in the **0.1 to 1.0 eV**² Δm^{2} range and with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory."

IV Черенковские чтения, ФИАН, Москва

MINOS: $v_{\mu} \rightarrow v_{e}$

7x10²⁰ POT

Efficiency for selection of v_e -CC events in Far Detector 41.6±1.0 % Background suppression in Far Detector ~93%

for $\delta = 0$

 $2sin^22\theta_{13}sin^2\theta_{23}$ < 0.12 (90% c.l.) normal hierarchy

 $2sin^22\theta_{13}sin^2\theta_{23}$ <0.20 (90% c.l.) inverted hierarchy

Best constraint on θ_{13} for almost all δ assuming $\Delta m^2 > 0$ and maximal $\sin^2 \theta_{23}$

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Expected Performance (Proposal)

Assumptions: Maximal mixing, 22.5x1019p.o.t. (5years @ 4.5x1019p.o.t./year)

τ Decay Channel	B.R. (%)	Signal	Background	
$\tau \to \mu$	17.7	2.9	0.17	
$\tau \to e$	17.8	3.5	0.17	
$\tau \to h$	49.5	3.1	0.24	
$\tau \to 3h$	15.0	0.9	0.17	
Total		10.4	0.75	
	ents: CC+NC interact nteractions $\overline{v_e}$ interactions C interactions	ions For full mixin $\Delta m^2 = 2.5 x$ (scales with (g and 10 ⁻³ eV ² (Δm ²) ²).	

OPERA

T2K physics goals

Proton energy 30 GeV, integral 8 x 10²¹ POT (~5 years)

$\nu_{\rm e}$ appearance

ν_{μ} disappearance

12.04.2011 IV Черенковские чтения, ФИАН, Москва

ND280

Hamamatsu MPPC

About 60k photosensors

SMRD counter

endcaps

foam spring Optical connector

Hamamatsu MPPC

INGRID horizontal

INGRID vertical

UA1/NOMAD magnet

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Ю.Г. Куденко, М.М. Хабибуллин ИЯИ РАН

WLS fiber

ND280

POD

server .

TPC module

Micromegas readout plane

Ю.Г. Куденко, М.М. Хабибуллин ИЯИ РАН

FGD scintillator bar

IV Черенковские чтения, ФИАН, Москва

12.07.2011

ΔT_0 distribution (SK FC events)

Δ

B

Estimation of oscillation parameter

Upper bound of θ_{13} are evaluated by 2 independent method.

A: Feldman-Cousins B: Classical one-sided limit

Systematic uncertainties are took into account for both analysis.

90% CL upper limit at $\Delta m_{23}^2 = 2.4 \times 10^{-3} eV^2$, $\delta_{CP} = 0$

Hierarchy	Upper Limit	Sensitivity
Normal $(\Delta m_{23}^2 > 0)$	0.50	0.35
Inverted $(\Delta m_{23}^2 < 0)$	0.59	0.42

Hierarchy	Upper Limit	Sensitivity
Normal $(\Delta m_{23}^2 > 0)$	0.44	0.32
Inverted $(\Delta m_{23}^2 < 0)$	0.53	0.39

12.04.2011 IV Черенковские чтения, ФИАН, Москва

Ю.Г. Куденко, М.М. Хабибуллин ИЯИ РАН

42

 $\sin^2(2\theta_{13})$

 10^{-1}

 10^{-1}

 $\sin^2(2\theta_{13})$

NOvA

θ_{13} sensitivities vs time

as expected in 2006

Short baseline reactor experiments Double-Chooz, RENO and Daya Bay $\longrightarrow \theta_{13}$ (insensitive to δ_{CP})

12.04.2011 IV Черенковские чтения, ФИАН, Москва