ПЕРВЫЕ РЕЗУЛЬТАТЫ, ПОЛУЧЕННЫЕ НА НОВОЙ УСТАНОВКЕ ДЛЯ ИЗУЧЕНИЯ ШАЛ ПО ЧЕРЕНКОВСКОМУ СВЕТУ ТУНКА-133

В.В. Просин (НИИЯФ МГУ) от коллаборации Тунка

Tunka Collaboration

S.F. Beregnev, S.N. Epimakhov, N.N. Kalmykov, E.E. Korosteleva, N.I. Karpov, V.A. Kozhin, L.A. Kuzmichev, M.I. Panasyuk, E.G. Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G. Sveshnikova, I.V. Yashin

- Skobeltsyn Inst. of Nucl. Phys. of Lomonosov Moscow State Univ., Moscow, Russia;

N.M. Budnev, A.V. Dyachok , O.A. Chvalaev, O.A. Gress, A.V. Korobchenko, R.R. Mirgazov, L.V. Pan'kov, Yu.A. Semeney, A.V. Zagorodnikov

- Inst. of Applied Phys. of Irkutsk State Univ., Irkutsk, Russia;

B.K. Lubsandorzhiev, B.A. Shaibonov(ju)

- Inst. for Nucl. Res. of Russian Academy of Sciences, Moscow, Russia;

V.S. Ptuskin

- IZMIRAN, Troitsk, Moscow Region, Russia;

Ch. Spiering, R. Wischnewski

- DESY-Zeuthen, Zeuthen, Germany;

A. Chiavassa

- Dip. di Fisica Generale Universita' di Torino and INFN, Torino, Italy.

D. Besson, J. Snyder, M. Stockham

- Department of Physics and Astronomy, University of Kansas, USA

Черенковский свет в воде и в воздухе

Вода – к-т преломления n = 1.333 $\theta_C = \arccos(1/n) = 41$

Воздух – к-т преломления n = 1.0003 $\theta_{C} = \arccos(1/n) = 1.4$

На высоте 5 км $\theta_{\rm C} = 1^{\circ}$

Средний угол многократного рассеяния электронов в ливне ~ 6

Распределение света определяется ФПУР электронов и продольным развитием ливня – каскадной кривой.

Географическое положение установки ТУНКА

http://dbserv.sinp.msu.ru/tunka

Тункинская долина.

Тункинская долина. Река Иркут.

ФЭУ типа ЕМІ-9350

Detectors

Ноябрь 2009 – Март 2010 – 286 часов Октябрь 2010 – Апрель 2011 – ~ 275 часов

>2 млн. событий с энергией ≥10¹⁵ эВ.
>10 событий в течение ночи, когда
срабатывают все 19 кластеров

DAQ system

Эксперимент

1024 точки с шагом 5 нс:

Эксперимент 2010: ~2 млн. событий «событие» = 7 – 133 пар записей:

Фитирование специально сконструированной функцией 3 параметра: 1) задержка фронта 0.25A_{max}, 2) площадь, 3) длительность

CORSIKA: Расчетные пространственные распределения для Тункнской долины.

CORSIKA: Определение энергии по параметру Q_{175}

Достигнутая точность характеристик ШАЛ:

Энергия первичной частицы E₀ (относительная точность 15% систематическая погрешность < 10%)

Глубина максимума X_{max} (случайная ошибка $< 30~{\rm г/cm^2}$ систематическая погрешность $< 7~{\rm r/cm^2}$)

Zenith angular acceptance

Simulated for:

- R = 25 cm window radius
- r = 11 cm PMT radius
- z0 = 15 cm distance from window to PMT

Transparency for EAS Cerenkov light

Simulation for the EAS cascade at $\theta = 35^{\circ}$ taking into account molecular (Reighley) scattering (T_R) and aerosol attenuation (T_{Mie})

	EMI	HAM
T _R	85.4%	86.5
T_{Mie}	88.1%	88.6%
Т	75.2%	76.6%

• $T(\theta) = T \cdot \exp(\sec \theta - \sec 35)$

Zenith angular correction function

EAS zenith angular distribution ($E_0 > 10^{16} \text{ eV}$)

• a_sens: $\vartheta < 34^0$ $1.00 - (\vartheta/75)^2$ $\vartheta > 34^0$ $1.25 - (\vartheta/50)^2$

Effective area

Tunka-133: Primary energy spectrum

Differential energy spectrum – Tunka-25

Тунка-133: Энергетический спектр

Особенности спектра в переходной области

GAMMA (Mt. Aragaz, 3200 a.s.l.)

GAMMA Coll., Nucl. Phys. G: Nucl. Part. Phys. 35 (2008) 115201

4 types of SNR
L. Sveshnikova, private communication, 2 types of SNR with E_{max} difference ~150

Оценка массового состава ПРЕДВАРИТЕЛЬНО!

- 1. Связь Х_{тах} с массой первичной частицы
- 2. Два метода измерения X_{max} с помощью Черенковского света
- 3. Зависимость средних Х_{тах} от энергии
- 4. Предварительные результаты по зависимости $\ln A$ от E_0

Mean mass composition

ЭКСПЕРИМЕНТ: Корреляция крутизны ФПР и зенитного угла $E_0 = 3 \cdot 10^{16} \text{ eV}$ and $E_0 = 6 \cdot 10^{16} \text{ eV}$

ЭКСПЕРИМЕНТ: Зависимость средней крутизны ФПР от зенитного

угла $E_0 = 3 \cdot 10^{16}$ эВ и $E_0 = 6 \cdot 10^{16}$ эВ

ЭКСПЕРИМЕНТ: Зависимость Н_{max} от крутизны ФПР Р

CORSIKA: Функция длительность-расстояние (ФДР)

CORSIKA: X_{max} vs. FWHM(400)

ЭКСПЕРИМЕНТ: Зависимость FWHM(400) от зенитного угла для $E_0 = 3 \cdot 10^{16}$ эВ

ЭКСПЕРИМЕНТ: Средняя FWHM(400) от θ для $E_0 = 3 \cdot 10^{16}$ эВ

ЭКСПЕРИМЕНТ: ΔX_{max} в зависимости от FWHM(400)

Средняя глубина максимума ШАЛ ПРЕДВАРИТЕЛЬНО!

Дальнейший анализ информации

- 1. Построение распределений по X_{max} в узких бинах по lgE_0
- 2. Моделирование распределений по X_{max} для групп ядер от протонов до железа
- 3. Сравнение экспериментальных распределений с комбинированными расчетными и определение наиболее вероятного состава в каждом бине
- 4. Нахождение <lnA> в каждом бине по энергии

X_{max} индивидуальные измерения на пимере предшествующего эксперимента Тунка-25

Оценка средних величин для широких несимметричных распределений недостаточна. Нужен анализ распреденлений в целом.

Simulated X_{max} distributions for 4 different nuclei groups taking into account all apparatus uncertainties. Model QGSJET-01.

Mass composition fit.

4 groups with equal weights:

Weights fit for the best agreement with the experimental distribution:

mixture variation

Тунка-25: распределение по X_{max}

line – experiment

Средний LnA

FIG. 1: Comparison of current HiRes stereo $\langle X_{max} \rangle$ results with results from the HiResprototype/MIA hybrid [21]. Also included are QGSJET01 (dashed) and QGSJET-II (solid) predictions for pure-proton and pure iron compositions.

Auger

Composition: mean depth and rms of shower maximum

the array border. 5.03.2010

Спасибо за внимание!