О ядерном и кулоновском взаимодействии при когерентной фрагментации релятивистских ядер в фотоэмульсии

В.Н. Фетисов

Физический институт им. П.Н. Лебедева РАН, Москва

1. Кулоновская и ядерная фрагментация: пример реакций $A_T(^{18}O, A_F)$ при E=1.7 ГэВ/нукл., счетчиковая методика, полные сечения (Lawrence Berkley Laboratory).

2. Канал фрагментации ⁷Li (P=3A ГэB/с) \rightarrow ³H+⁴He

на ядрах и протонах фотоэмульсии (эксперимент группы Харламова, Пересадько, Александрова и др., ФИАН). Дифференциальные сечения по поперечному переданному фрагментам импульсу.

- 3. Анализ данных:
- 3.1. Электромагнитная диссоциация ⁷Li.
- 3.2 Ядерная дифракционное расщепление ⁷Li.
- 4. Выводы.

$d+A_T \rightarrow p+n+A_F$

- S.M. Dancoff, Phys.Rev.**72**,1017(1947);
- Л.Н. Розенцвейг, А.Г. Ситенко, ЖЭТФ, **30**,427(1950);
- Е.Л. Фейнберг, ЖЭТФ,**29**,115(1955);
- R.J. Glauber, Phys.Rev.99,1515(1955);
- A.I. Akhiezer, A.G. Sitenko, Phys.Rev. 106,1236(1955);

D.L.Olson, B.L.Berman, D.E.Greiner, H.H.Heckman, P.J.Lindstrom, G.D.Westall, H.J.Crawford Phys. Rev. C24,1529 (1981)

Электромагнитная диссоциация

4

Счетчики, спектрометр

$$\sigma_{tot}^{exp}(T,F) = \sigma_n^{exp}(T,F) + \sigma_c^{exp}(T,F)$$

$$\sigma_n^{exp}(T,F) = \gamma_T \gamma_F$$

$$\sigma_c^{theor} = \sigma_{ww} = \int n(\omega) \sigma_\gamma(\omega) \frac{d\omega}{\omega}$$

$$n(\omega) = \frac{2}{\pi} Z_T^2 \alpha(\frac{c}{v})^2 [\xi K_0(\xi) K_1(\xi) - \frac{v^2 \xi^2}{2c^2} (K_1^2(\xi) - K_0^2(\xi))],$$

$$\xi = \omega R / \gamma v$$

$$E_{\gamma}^{max} = \hbar \omega^{max} = \gamma \hbar c / b_{min}$$

При T=1.7 ГэВ(на нуклон): $\beta = v/c=0.93$, $\gamma=2.81$;

Ядерные σ_n и электромагнитные σ_c , σ_{ww} сечения (mb) фрагментации ¹⁸О (T=1.7 ГэВ/нукл.)

$18 O \rightarrow A_F$	$_zA_T$	σ_{tot}	σ_n	σ_c	σ_c/σ_n	σ_{ww}
n+ ¹⁷ O	₂₂ Ti	75.3	66.5	8.7	0.13	12.5
	₈₂ Pb	226.6	90.5	136.0	1.5	135.0
	₉₂ U	234.0	93.2	140.8	1.51	167.0
2n+ ¹⁶ O	₂₂ Ti	53.2	46.8	6.4	0.14	5.4
	₂₉ Cu	59.3	51.1	8.2	0.16	9.0
	₅₀ Sn	88.7	61.4	27.3	0.44	23.7
	$_{74}W$	111.1	60.5	50.6	0.84	46.8
	₈₂ Pb	128.7	63.6	65.1	1.02	55.2
	₉₂ U	139.7	65.5	74.2	1.13	68.1
p+ ¹⁷ N	₂₂ Ti	40.2	40.7?			2.4
	₈₂ Pb	75.5	55.3	20.2	0.36	23.8
	₉₂ U	82.0	56.9	25.1	0.44	29.2

Н. Г. Пересадько, Ю.А. Александров и др. Письма в ЖЭТФ, **88**, 83, (2007), Ядерная физика, **73**, 1994, (2010).

Электромагнитная диссоциация

Ядерное расщепление

А_т H, C, N, O, Br, Ag фотоэмульсия

Последующий анализ данных включает следующие аспекты теории:

1.Двухкластерная модель ⁷Li(В.Г. Неудачин, Ю.Ф. Смирнов, В.И. Кукулин),

потенциалы, ядерные волновые функции.

2. Мультипольное разложение электромагнитного взаимодействия релятивистского ядра ⁷Li с ядрами (C.Bertulani, G.Baur), сечение электромагнитной диссоциации.

3. Дифракционная теория Глаубера-Ситенко (кластерное приближение, предложенное ранее А.Г. Ситенко с сотрудниками), кластерные профильные функции, сечения ядерной фрагментации. <u>СЕЧЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ДИССОЦИАЦИИ</u> ДВУХКЛАСТЕРНОГО ЯДРА. Электрические Е λ -переходы.

$$d\sigma = \frac{1}{(2J_i+1)} \sum_{m_f, M_i} \left| <\mathbf{q}, sm_f |T|(s, l_i) J_i, M_i > \right|^2 \frac{Q \, dQ \, d\psi}{k_i^2} \frac{d^3 q}{(2\pi)^3},$$

$$<\mathbf{q}, sm_{f}|T|(s, l_{i})J_{i}, M_{i}> = 4\pi Z_{T}(\frac{e^{2}}{\hbar c})\frac{c}{\gamma v}k_{i}\sum_{LM}i^{M}(\frac{\omega}{c})^{L}\sqrt{2L+1}(Z_{1}\beta_{1}^{L}+(-1)^{L}Z_{2}\beta_{2}^{L})exp(-iM\psi)\chi_{M}(Q, R)G_{ELM}(\frac{c}{v})<\mathbf{q}, sm_{f}|r^{L}Y_{L-M}(\frac{\mathbf{r}}{r})|J_{i}M_{i}>.$$

где $\beta_1 = \frac{m_2}{m_1 + m_2}, \ \beta_2 = \frac{m_1}{m_1 + m_2}, \ m_i - -$ массы кластеров, **q** - -импульс относительного движения, **r** = **r**_1 - **r**_2.

$$\omega_1(\mathbf{b}_1) + \omega_2(\mathbf{b}_2) + \omega_1(\mathbf{b}_1)\omega_2(\mathbf{b}_2)$$

$$\omega_i(b) = 1 - \exp(i\chi_i(b))$$

V. Franco, A. Tekou:

$$i\chi(b) = -\frac{A_1 A_2 \sigma_N}{8\pi^2} (1-i\rho) \int exp(-i\mathbf{q}\mathbf{b} - a_N q^2/2) K(q) S_{A_1}(q) S_{A_2}(q) d^2q,$$

 \bar{r}_t =1.70, \bar{r}_{α} =1.67, \bar{r}_{CNO} =2.54, \bar{r}_{Br} =5.1, \bar{r}_{Ag} =5.62 (фм). σ_N =43.0 мб, ρ =-0.35, a_N =0.242 фм². ЯДЕРНОЕ ДИФРАКЦИОННОЕ СЕЧЕНИЕ ФРАГМЕНТАЦИИ

$$\begin{split} \frac{d\sigma_N}{dQ} &= A \Big(1 + I_0(Q) - \frac{3}{2} \sum_{lj,L} (I_L^{lj}(\beta_1 Q) \\ &+ (-1)^L I_L^{lj}(\beta_2 Q))^2 (10l0|L0)^2 \\ &\times \left\{ \begin{matrix} j & l & 1/2 \\ 1 & 3/2 & L \end{matrix} \right\}^2 \Big) \\ \frac{A}{4\pi Q} &= \left| \int_0^\infty \omega(b) J_0(Qb) b db \right|^2, \ I_0(q) = \int_0^\infty j_0(qr) R_i^2 r^2 dr, \end{split}$$

$$I_L^{lj}(q) = \int_0^\infty j_L(qr) R_{lj} R_i r^2 dr$$

1.Анализ экспериментальных данных группы Харламова, Пересадько, Александрова и др. по фрагментации релятивистского ядра ⁷Li на два ядра ³H и ⁴He показывает, что этот эксперимент является хорошим тестом двухкластерной компоненты ³H+⁴He в структуре ⁷Li. Измеренные в одном опыте полные и дифференциальные сечения на ядрах и протонах эмульсии дают примереное значение вероятности такой кластеризации на уровне 0.7.

2. Наблюдаемые нерегулярности в дифференциальном сечении на ядрах эмульсии обясняются наложением двух дифракционных картин неупругого рассеяния на легких (CNO) и тяжелых ядрах (AgBr). 3.Предсказываемые дифракционные дифференциальные сечения реакции на чистых мишенях имеют форму осцилляций, резко отличающуюся от известной формы сечения упругого рассеяния с главным максимумом при нулевом импульсе.
4.Величины сечений и число максимумов сильно зависят от размытости плотности на поверхности ядра (эффект Ситенко-Тартаковского, наблюдавшийся в дифракционом расщеплении дейтрона).

Фермиевское распределение наиболее приемлемо.

5. Сечение кулоновской диссоциации сосредоточено вблизи малых Q и составляет около 10% от полного сечения.

6. Данная работа может быть полезным ориентиром при измерениях сечений счетчиковой методикой с более высокой статистикой.