

Lomonosov Moscow State University

Газ-пиксельные детекторы для эксперимента ATLAS

Анатолий Романюк (МИФИ) Сергей Смирнов (МИФИ) Владимир Тихомиров (ФИАН) <u>Алексей Болдыре</u>в (НИИЯФ МГУ)

Детектор ATLAS на LHC

Внутренний детектор (ID)

- Пиксельный и микростриповый кремниевые детекторы
- Детектор переходного излучения

• Соленоид (2T)

- Мюонный спектрометр
 - Воздухо-зазорный
 - тороидальный магнит ~ 0.5 Т
 - Мюонные камеры

Калориметр

- LAr ЭМ калориметр: |ŋ|< 3.2
- Адронный калориметр

Апгрейд (модернизация) детектора ATLAS

Модернизация ускорителя:

- после 2014 г. до 10³⁴см⁻²с⁻¹, 6.5 + 6.5 ТэВ, 25 нс
- 2018-2021 гг. 2-3х10³⁴см⁻²с⁻¹, 7 + 7 ТэВ, 25 (50) нс
- после 2021 г. до 5х10³⁴см⁻²с⁻¹, 7 + 7 ТэВ, 25 (50) нс

3000 фб⁻¹ к 2030 г.!

Основные причины необходимости апгрейда:

- Адаптация к увеличенной светимости (загрузки, триггирование)
- Требование физических задач (трекинг, определение типа частиц)
- Естественное и радиационное старение

Апгрейд (модернизация) детектора ATLAS

Порядок апгрейда детектора ATLAS:

2013-2014 гг.

• усовершенствование L1 триггера (новые L1Calo MCMs и CTP)

до 2018 г.

- Вставной B-layer (IBL)
- Замена электроники у LAr и TileCal
- Быстрый Трековый Триггер (FTK)
- Замена малых колёс мюонных камер

после 2021 г.

• Замена Внутреннего Детектора

газовый пиксельный детектор вместо существующего TRT

- Замена торцевых калориметров
- MDT триггер

Пятые Черенковские чтения

Детектор GasPixel

Требования к GasPixel/GridPixel

- Геометрические ограничения во Внутреннем Детекторе
- Работа при высоких загрузках
- Прецезионная точность восстановления треков
- Идентификация типа частицы при помощи переходного излучения
- Реализация L1-триггера во Внутреннем Детекторе

Технологии для GasPixel

TimePix пиксельный чип

- Потребляемая мощность каждого пикселя 1,5 мкВт
- Мёртвое время (регулируемое) 50-3000 нс
- Зарядовое усиление 85 mV/ke⁻
- Паразитная внутренняя ёмкость 30 фФ
- Входной шум 70 ENC (эквивалентный шумовой заряд)
- Минимальный порог 350 е
- Порог АЦП 80 е

SiNProt Пять Si₃N₄ 2,4 мкм защитных слоя для рабочей поверхности чипа

InGrid (Micromegas) Нанесённая на Si-подложку Micromegas-мембрана при помощи фотолитографии

Пятые Черенковские чтения

10 апреля 2012

Возможная геометрия модулей GasPixel

Детектор может занимать внешнюю облать Внутреннего Детектора ATLAS и содержать 2 слоя для радиатора Переходного Излучения

Сложности: 1.В области барреля (малые η) угол падения трека сильно зависит от угла

 Необходима компенсация угла Лоренца

Основные требования к разработке:

- 1. Ограниченное пространство необходим эффективный радиатор ПИ
- 2. Минимальный объем дрейфовой камеры

Выбор газовой смеси

Желаемые свойства:

- Высокая скорость дрейфа > 4 см/мкс
- Низкая диффузия < **170-180 мкм/см**
- Малый угол Лоренца < 30°
- Требования безопасности: невоспламенимость, нетоксичность, нерадиоактивность
- Стабильность усиления 3000-5000 в линейном режиме
- Без старения

< 2 кB/см 0..1,5 Тл

«внешние» условия: эл. поле, магн. поле

А также фреоны (CF₄), Азотные соединения (NH₃, NO, N₂O), Силан (SiH₄)

Ar- или Xe- (или вместе) основа (60-70%) и примесь из: CO₂, CF₄, Силан, DME, Изобутан, N₂O, NH₃

Распознавание типа частиц с помощью ПИ и dE/dx

Двухслойный детектор обеспечивает фактор подавления пионов ~50 при 90% эффективности регистрации электронов

Фактор подавления пионов ~7 при 90% эффективности регистрации электронов

Пятые Черенковские чтения

Test-beam GasPixel для ATLAS (май 2008 г.)

InGrid TimePix детектор, 14x14 мм, 256x256 пикселей (размер пикселя 55 мкм)

Два рабочих режима: измерение времени прибытия дрейфовых электронов и надпороговое время (амплитудное измерение)

Test-beam GasPixel для ATLAS (май 2008 г.)

InGrid TimePix детектор, 14x14 мм, 256x256 пикселей (размер пикселя 55 мкм)

InGrid пиксельная технология Расстояние дрейфа 16 мм $V_{drift} = 3800 \text{ B}$ $E_{drift} = 2000 \text{ B/cM}$ $V_{amp} \sim 470 \text{ B}$ Газовое усиление ~ 800-3500 Защитный слой 30 мкм Зазор усиления 50 мкм Положение: 25° к оси пучка

Параметры для Xe/CO₂ (70/30): Общее время дрейфа ~ 300 нс

Ионный сигнал ~ 80 нс

Коэффициент поперечной диффузии ~ 240 мкм/см

Коэффициент продольной диффузии ~ 130 мкм/см

Газовые смеси:

Ar/CO₂ Xe/CO₂ He/Изобутан DME/CO₂ Порог электроники ~ 800 электронов Диапазон газового усиления 800-1600 Эффективный порог > 1600 электронов или > **1** первичного электрона

Эффективность для 1 первичного электрона ~ 30%

Пример события в детекторе GasPixel

250

200

150

100

50

MC-моделирование: GEANT3 (Atlsim) ATLAS TRT код для ПИ Анализ и реконструкция трека в PAW

MC

All Sugar and

Восстановление треков в детекторе GasPixel

Пространственное разрешение: 30 мкм для электронов (без переходного излучения) 55 мкм для электронов с кластерами ПИ При угле падения 10° угловая точность составила 0,6° для проекции трека

МС-моделирование детектора

MC-моделирование: GEANT3 (Atlsim) ATLAS TRT код для ПИ Анализ и реконструкция трека в PAW

МС-модель предполагает следующую конфигурацию параметров:

- Размер пикселя и число пикселей в чипе
- Параметры камеры
- Энергия пучка и тип частиц
- Состав газовой смеси
- Скорость дрейфа и диффузия в газовой смеси
- Геометрические параметры пучка
- Параметры радиатора переходного излучения
- Задержки электроники
- Пороги регистрации
- и другие

Выходные данные :

Без информации о первых электронах:

- Время прибытия электронов
- Счёт электронов
- С информацией о первых электронах:
- Временной режим
- ТоТ режим (измерение надпорогового времени)

Планы Test-beam в мае 2012 г.

- Изучение свойств газовых смесей
- Тесты при различных конфигурациях установки и разных размерах дрейфовой камеры
- Эффекты в магнитном поле (при В = 1,5 Тл)
- Использование радиаторов переходного излучения

Выводы:

Детектор GasPixel

Новые возможности: Векторный трекинг (при специальной геометрии установки)

1. Высокоточное пространственное разрешение - координаты X (φ) и Y (η)

- 2. Определение направлений ф и п
- 3. Точные ПИ и dE/dx измерения

Ближайшие планы:

1. Проведение test-beam в мае 2012 г. на прототипе детектора

- и анализ полученных данных
- 2. Разработка L1 триггера на базе GasPixel

Дополнительные слайды

19

Пятые Черенковские чтения

Зависимость от магнитного поля

Diffusion coefficients vs E

Смеси-кандидаты

Хе основа

	Gas mixture			Drift velocity (cm/µs)	Diffusion ExB (µm/cm)	Lorentz angle (°)	E field (kV/cm)
Xe/CF4/Silane	80	16	4	5,0	120	25	2,0
Xe/CF4/Isobutane	80	16	4	5,0	130	26	1,8
Xe/CO2/NH3	80	16	4	4,8	135	24	2,0
Xe/CO2/N2O	65	30		4,0	150	20	2,0
Xe/CO2/N2O	80	16	4	6,0	150	28	2,0
Xe/CO2/CF4	70	27	3	4,5	155	21	2,0
Xe/CO2	65	35		4,3	160	21	2,0
Xe/CO2/Silane	70	27	3	4,5	165	22	2,0
Xe/CO2	70	30		4,3	170	22	1,9
Xe/CO2/N2O	70	25	5	4,7	170	23	2,1
Xe/CO2/Silane	80	16	4	4,0	170	21	1,0
Xe/CO2/Isobutane	70	27	3	4,5	175	21	1,9
Xe/CO2/NH3	70	27	3	4,5	180	20	2,2
Xe/CO2/N2O	70	27	3	4,5	185	22	2,1
Xe/CO2	75	25		4,5	190	23	2,0
Xe/CO2	80	20		4,0	220	25	1,8
Xe/CO2/N2O	80	17	3	4,5	220	24	2,0
Xe/CO2/N2O	80	10	10	4,8	220	25	2,0
Xe/CO2/NH3	80	14	6	4,0	220	21	2,0
Xe/CO2/NH3	80	10	10	3,9	230	19	2,4
Xe/CO2/Silane	93	4	3	3,8	230	30	1,5
Xe/CO2/NH3	80	6	14	3,8	245	17	2,5
Xe/CO2/N2O	80	15	5	4,7	250	25	2,0
Xe/CO2/NH3	80	4	16	3,7	255	16	2,7

Aggressive Electronegative Ageing

Смеси-кандидаты

Ar основа

Gas mixture			Drift velocity (cm/µs)	Diffusion ExB (µm/cm)	Lorentz angle (°)	E field (kV/cm)	
Ar/CF4/Isobutane	95	3	2	5,5	65	44	0,3
Ar/CF4/Silane	95	2	3	6,2	75	44	0,4
Ar/Silane/Isobutane	95	3	2	4,6	80	44	0,3
Ar/CO2/Silane	95	2	3	4,5	130	42	0,5
Ar/CO2	60	40		4,7	140	21	1,9
Ar/CO2/N2O	65	25	10	5,0	140	25	1,8
Ar/CO2/NH3	80	16	4	4,0	150	26	1,5
Ar/CO2/N2O	80	10	10	4,4	150	34	1
Ar/CO2	70	30		4,5	160	24	1,7
Ar/CO2/N2O	70	25	5	5,0	160	25	1,7
Ar/CO2	65	35		5,0	170	23	2,2
Ar/CO2/Isobutane	95	3	2	3,1	170	41	0,4
Ar/CO2/DME	90	3	7	3,5	200	32	0,9
Ar/CO2/N2O	90	6	4	4,4	200	36	0,9
Ar/CO2/NH3	94	3	3	3,2	210	35	0,7
Ar/CO2/NH3	80	10	10	5,0	220	22	2,0
Ar/CO2/NH3	90	5	5	4,0	225	30	1,0
Ar/CO2/DME	90	7	3	4,0	235	32	1,0
Ar/CO2/N2O	93	4	3	4,0	250	34	0,9
Ar/CO2/NH3	95	2	3	3,2	250	35	0,7
Ar/CO2/N2O	95	3	2	3,4	310	32	0,9

Смеси-кандидаты

Xe-Ar основа

	Gas mixture				Diffusion ExB (µm/cm)	Lorentz angle (°)	E field (kV/cm)
Xe/Ar/CO2/NH3	40	40	14+6	4,0	190	22	1,8
Xe/Ar/DME	45	45	10	3,0	250	25	1,2
Xe/Ar/DME/H2	40	50	7+3	2,8	250	27	0,9
Xe/Ar/CO2/DME	35	50	10+5	4,0	220	27	1,5
Xe/Ar/CO2/DME	40	50	5+5	3,2	210	29	1,0
Xe/Ar/DME	50	45	5	2,3	255	31	0,7
Xe/Ar/CO2/Isobutane	45	50	3+2	2,5	250	34	0,6
Xe/Ar/Silane/Isobutan	45	45	8+2	5,0	180	34	1,3
Xe/Ar/Silane	45	45	10	5,0	155	35	1,2
Xe/Ar/Silane/Isobutan	45	50	3+2	3,5	210	35	0,8

