#### <u>Физика</u> Малого Взрыва на LHC

А.В. Леонидов

Физический институт РАН

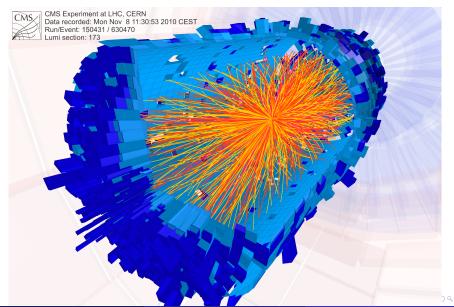
VI Черенковские чтения, 09.04.2013

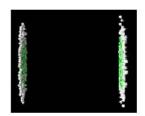
#### Ускорители тяжелых ионов

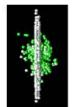
| Collider | $\sqrt{s}_{NN}$ GeV/c |
|----------|-----------------------|
| AGS      | 5.4                   |
| SPS      | 19                    |
| RHIC     | 200                   |
| LHC      | 2750 (5500)           |

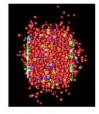
Эксперименты с тяжелыми ионами на LHC: ALICE, ATLAS, CMS, (?) AFTER@LHC

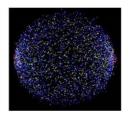
#### Малый взрыв: соударение ядер свинца на LHC

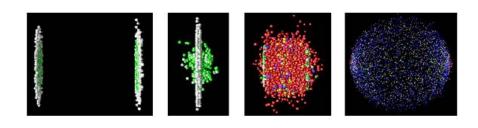




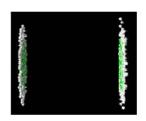




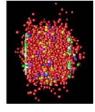


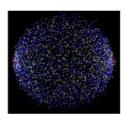


• Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!





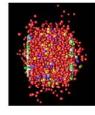


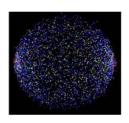


- Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!
- Доминирующий продольный разлет, медленное формирование радиального расширения.



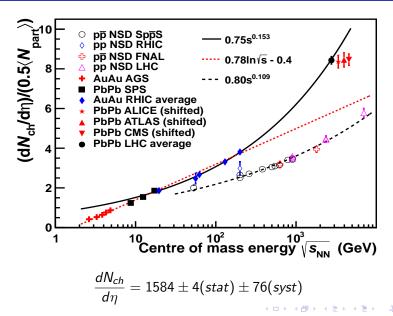






- Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!
- Доминирующий продольный разлет, медленное формирование радиального расширения.
- Изотропизация, формирование разреженного потока конечных адронов

#### <u>Множест</u>венность



• Множественность в AA соударениях растет с энергией быстрее, чем в pp.

- Множественность в AA соударениях растет с энергией быстрее, чем в pp.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.

- Множественность в AA соударениях растет с энергией быстрее, чем в pp.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.
- Измерение множественности позволяет дать оценку начальной плотности энергии

$$\varepsilon \geq \frac{dE_T/d\eta}{\tau_0\,\pi R^2} = \frac{3}{2} \langle E_T/N \rangle \frac{dN_{\rm ch}/d\eta}{\tau_0\,\pi R^2}$$

- Множественность в AA соударениях растет с энергией быстрее, чем в pp.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.
- Измерение множественности позволяет дать оценку начальной плотности энергии

$$\varepsilon \geq \frac{dE_T/d\eta}{\tau_0 \, \pi R^2} = \frac{3}{2} \langle E_T/N \rangle \frac{dN_{\rm ch}/d\eta}{\tau_0 \, \pi R^2}$$

ullet На LHC  $arepsilon \geq 15 \mbox{GeV}/\mbox{fm}^3$ , что в три раза больше, чем на RHIC.

### Подавление струй с большими $p_{\mathsf{T}}$

• Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.

### Подавление струй с большими $p_{\mathsf{T}}$

- Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.
- На уровне спектра изучается сравнительная (по отношению к pp соударениям) вероятность регистрации струи с заданным  $p_T$   $R_A^{\rm jet}A$ , нормированная на число жестких pp- соударений  $\langle N_{\rm coll} \rangle$ :

$$R_{AA}^{
m jet} = rac{dN_{
m jets}^{AA}/dp_{
m T}}{\langle N_{
m coll} 
angle dN_{
m jets}^{pp}/dp_{
m T}}$$

### Подавление струй с большими $p_{\mathsf{T}}$

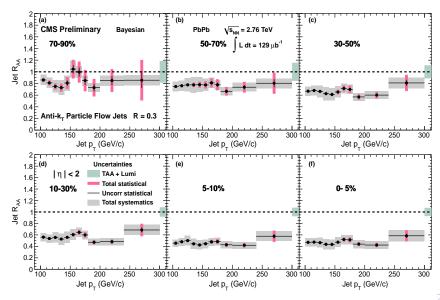
- Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.
- На уровне спектра изучается сравнительная (по отношению к pp соударениям) вероятность регистрации струи с заданным  $p_T$   $R_A^{\rm jet}A$ , нормированная на число жестких pp- соударений  $\langle N_{\rm coll} \rangle$ :

$$R_{AA}^{
m jet} = rac{dN_{
m jets}^{AA}/dp_{
m T}}{\langle N_{
m coll} 
angle dN_{
m jets}^{pp}/dp_{
m T}}$$

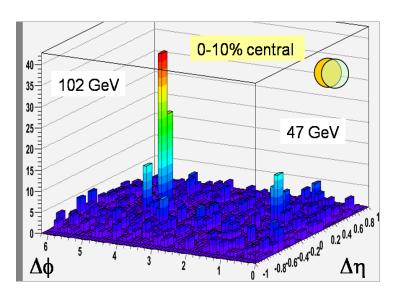
• На уровне баланса энергии - импульса в заданном соударении изучается энергетический дисбаланс между двумя струями с наибольшими энергиями в событии  $A_J$ :

$$A_{J} = \frac{p_{\mathsf{T}}^{1} - p_{\mathsf{T}}^{2}}{p_{\mathsf{T}}^{1} + p_{\mathsf{T}}^{2}}$$

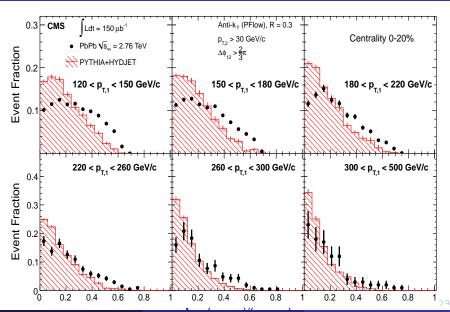
#### Подавление струй с большими $p_{\tau}$ : спектр



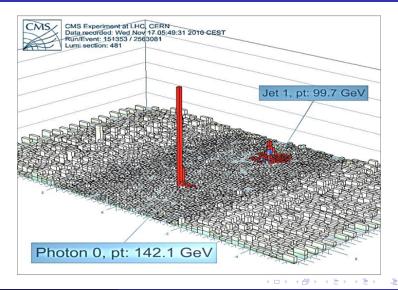
## Подавление струй с большими $p_{\mathtt{T}}$ : асимметрия



## Подавление струй с большими $p_{\mathsf{T}}$ : асимметрия



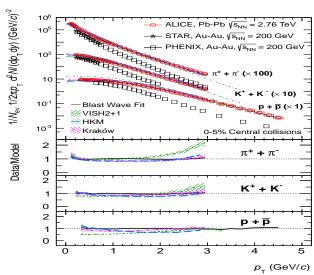
# Подавление струй с большими $p_{\mathsf{T}}$ : асимметрия в системе $\gamma$ - струя



#### Спектр по поперечным импульсам



# Спектр по поперечным импульсам $_{\text{Малые }p_{\text{т}}}$



# Спектр по поперечным импульсам Малые $p_{\tau}$ , коллективный радиальный разлет

• Спектр "элементарного" источника  $(pp, e^+e^-)$ :

$$E\frac{dn}{d^3p} \sim V E e^{-E/T_H}$$

# Спектр по поперечным импульсам Малые $p_{\tau}$ , коллективный радиальный разлет

• Спектр "элементарного" источника  $(pp, e^+e^-)$ :

$$E rac{dn}{d^3p} \sim V \; E \; e^{-E/T_H}$$

• Радиальный разлет со средней скоростью  $\langle \beta_{\mathcal{T}} \rangle$  приводит к изменению спектра:

$$T_{
m eff} = \left\{ egin{array}{ll} T_H + m \left< eta_T 
ight>^2, & p_T \leq 2 \ {
m GeV/c} \ T_H \left( rac{1 + \left< eta_T 
ight>}{1 - \left< eta_T 
ight>} 
ight)^{1/2}, & p_T \gg m \end{array} 
ight.$$

# Спектр по поперечным импульсам Малые $p_{\tau}$ , коллективный радиальный разлет

• Спектр "элементарного" источника  $(pp, e^+e^-)$ :

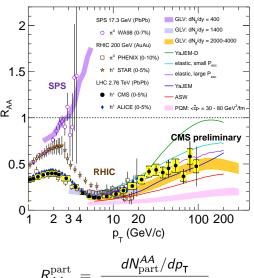
$$E \frac{dn}{d^3p} \sim V \ E \ e^{-E/T_H}$$

• Радиальный разлет со средней скоростью  $\langle \beta_T \rangle$  приводит к изменению спектра:

$$T_{ ext{eff}} = \left\{ egin{aligned} T_H + m \left< eta_T 
ight>^2, & p_T \leq 2 \ ext{GeV/c} \ T_H \left( rac{1 + \left< eta_T 
ight>}{1 - \left< eta_T 
ight>} 
ight)^{1/2}, & p_T \gg m \end{aligned} 
ight.$$

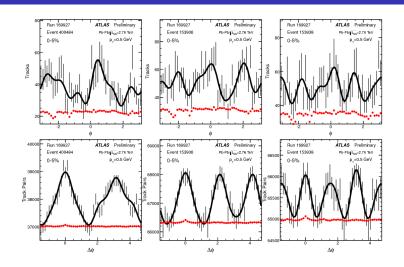
• На LHC  $\langle \beta_T \rangle \simeq 0.65$ , т.е. наблюдается ультрарелятивистское радиальное расширение горячей зоны

#### Подавление рождения частиц в центральных соударениях

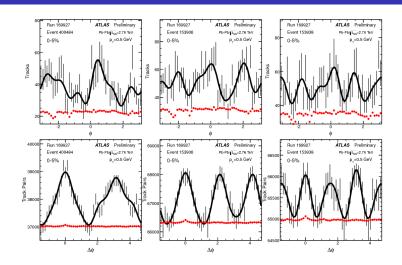


$$R_{AA}^{
m part} \, = \, rac{dN_{
m part}^{AA}/dp_{
m T}}{\langle N_{
m coll} 
angle dN_{
m part}^{pp}/dp_{
m T}}$$

#### Пособытийная азимутальная асимметрия

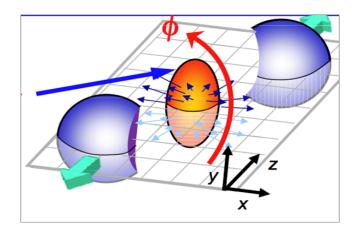


#### Пособытийная азимутальная асимметрия

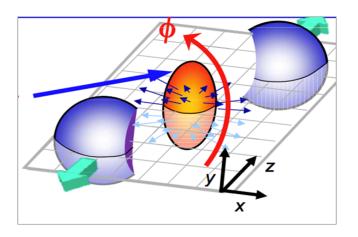


• Большие пособытийные флуктуации азимутального распределения частиц.

#### Эллиптический поток в нецентральных соударениях

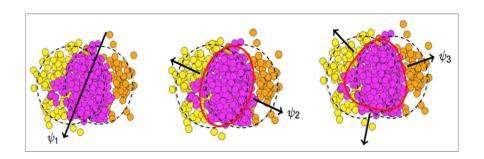


#### Эллиптический поток в нецентральных соударениях

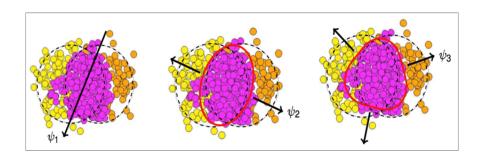


• Разность давлений по осям эллипсоида в горячей зоне приводит к пособытийной азиммутальной асимметрии импульсов конечных частиц в событии - эллиптическому потоку.

#### Направленный, эллиптический и треугольный потоки

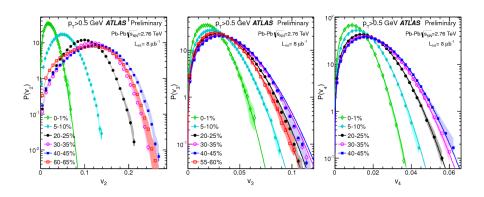


#### Направленный, эллиптический и треугольный потоки



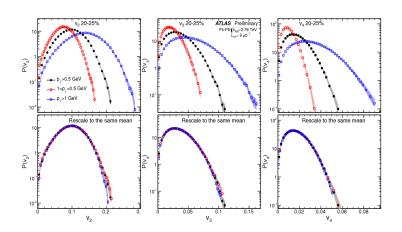
• Направленный, эллиптический и треугольный потоки. Нечетные потоки характеризуют флуктуации формы исходной плотной горячей области.

## Распределения вероятностей $P(v_2)$ , $P(v_3)$ и $P(v_4)$



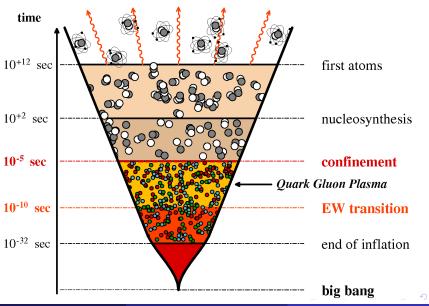
• На LHC впервые измерены распределения  $P(v_n)!$ 

#### Азимутальная асимметрия: скейлинг по $p_{\mathsf{T}}$

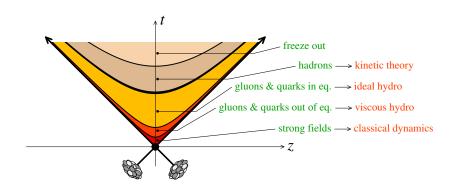


• Перемасштабированные к одинаковому среднему  $p_{\mathsf{T}}$  распределения  $P(v_2)$ ,  $P(v_3)$  и  $P(v_4)$  для разных интервалов поперечных импульсов совпадают.

#### Большой взрыв: стадии



#### Малый взрыв: стадии



# Гидродинамическое описание экспериментальных данных

C. Gale et al., 1209.6330

ullet Уравнения (вязкой)  $3{+}1$  гидродинамики  $\partial_\mu T^{\mu
u}=0$ 

# Гидродинамическое описание экспериментальных данных

C. Gale et al., 1209.6330

- ullet Уравнения (вязкой)  $3{+}1$  гидродинамики  $\partial_\mu T^{\mu
  u}=0$
- ullet Уравнение состояния  $p=f(\epsilon)$  берется в виде интерполяции КХД на решетке

# Гидродинамическое описание экспериментальных данных

C. Gale et al., 1209.6330

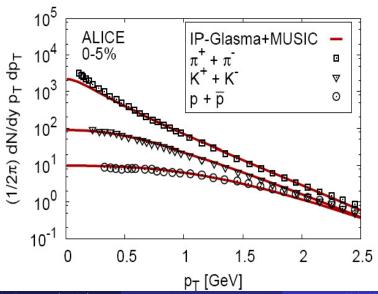
- ullet Уравнения (вязкой)  $3{+}1$  гидродинамики  $\partial_\mu T^{\mu
  u}=0$
- ullet Уравнение состояния  $p=f(\epsilon)$  берется в виде интерполяции КХД на решетке
- Начальные условия  $T^{\mu\nu}(\tau=\tau_0,\eta,\mathbf{x}_\perp)$  берутся при  $\tau=\tau_0=0.2$  фм (!!) сшивкой решений классических уравнений YM с начальными конфигурациями из модели CGC.

# Гидродинамическое описание экспериментальных данных

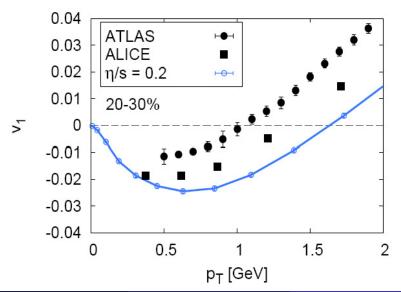
C. Gale et al., 1209.6330

- ullet Уравнения (вязкой)  $3{+}1$  гидродинамики  $\partial_\mu T^{\mu
  u}=0$
- ullet Уравнение состояния  $p=f(\epsilon)$  берется в виде интерполяции КХД на решетке
- Начальные условия  $T^{\mu\nu}(\tau=\tau_0,\eta,\mathbf{x}_\perp)$  берутся при  $\tau=\tau_0=0.2$  фм (!!) сшивкой решений классических уравнений YM с начальными конфигурациями из модели CGC.
- Для описания азимутальной асимметрии необходим явный учет флуктуаций формы начальных конфигураций

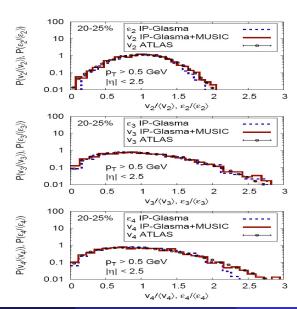
# Гидродинамика: спектр по $p_{\mathsf{T}}$



## Гидродинамика: Направленный поток $\emph{v}_1$



## Гидродинамика: Распределения $P(v_n)$



 Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.
- Основная теоретическая задача изучение коллективных гидродинамических режимов в терминах квантовой теории поля.

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.
- Основная теоретическая задача изучение коллективных гидродинамических режимов в терминах квантовой теории поля.
- Для режима слабой связи основой рассмотрения является картина квантовых флуктуаций над сильным классическим полем.
   Такое рассмотрение естественно из-за аномально больших чисел заполнения глюонных мод в области перекрытия.

## Скалярная модель: древесное приближение

T. Epelbaum et al., Nucl. Phys. A872 (2011), 210

- Эволюция скалярного поля, генерируемого сильным источником:
- Лагранжиан:

$$\mathcal{L} \equiv \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \underbrace{\frac{g^2}{4!} \phi^4}_{V(\phi)} + J \phi \qquad J \sim \theta(-x^0) \frac{Q^3}{g}$$

• Древесный тензор энергии - импульса

$$T_{\text{LO}}^{\mu\nu}(x) = \partial^{\mu}\varphi\partial^{\nu}\varphi - g^{\mu\nu}\left[\frac{1}{2}(\partial_{\alpha}\varphi)^{2} - \frac{g^{2}}{4!}\varphi^{4}\right],$$

$$\Box\varphi + \frac{g^{2}}{3!}\varphi^{3} = J, \quad \lim_{x^{0} \to -\infty}\varphi(x^{0}, \mathbf{x}) = 0$$

(ロ) (部) (き) (き) き の(

# Скалярная модель: суммирование секулярных расходимостей

- Учет квантовых флуктуаций выявляет наличие неустойчивостей (параметрический резонанс).
- Суммирование соответсвующих секулярных расходимостей:

$$T_{\text{resum}}^{\mu\nu}(x) \equiv \exp\left[\int d^3\mathbf{u} \,\beta \cdot \mathbb{T}_{\mathbf{u}} + \frac{1}{2} \int d^3\mathbf{u} d^3\mathbf{v} \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} [a_{+\mathbf{k}} \cdot \mathbb{T}_{\mathbf{u}}] [a_{-\mathbf{k}} \cdot \mathbb{T}_{\mathbf{v}}]\right] T_{\text{LO}}^{\mu\nu}(x)$$

ullet  $\mathbb{T}_{oldsymbol{u}}$  - генератор сдвига на гиперповерхности  $x^0=0$ :

$$\mathbf{a} \cdot \mathbb{T}_{\mathbf{u}} \equiv \mathbf{a}(0, \mathbf{u}) \frac{\delta}{\delta \varphi_0(\mathbf{u})} + \dot{\mathbf{a}}(0, \mathbf{u}) \frac{\delta}{\delta \dot{\varphi}_0(\mathbf{u})} \ \Rightarrow \ \mathbf{a}(\mathbf{x}) = \int d^3 \mathbf{u} \, \left[ \mathbf{a} \cdot \mathbb{T}_{\mathbf{u}} \right] \, \varphi(\mathbf{x})$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ からぐ

# Скалярная модель: суммирование секулярных расходимостей

• Поля  $a_{\pm {f k}}$  - малые возмущения на фоне  $\varphi$ ;  $\beta$  - однопетлевая поправка к  $\varphi$ ,

$$\label{eq:continuous_equation} \begin{split} \left[\Box + V''(\varphi)\right] a_{\pm\mathbf{k}} &= 0 \;, \qquad \lim_{x^0 \to -\infty} a_{\pm\mathbf{k}}(x) = e^{\pm ik \cdot x} \;, \\ \left[\Box + V''(\varphi)\right] \beta &= -\frac{1}{2} V'''(\varphi) \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} \; a_{-\mathbf{k}} a_{+\mathbf{k}}, \\ \lim_{x^0 \to -\infty} \beta(x) &= 0 \end{split}$$

# Скалярная модель: суммирование секулярных расходимостей

 Суммирование секулярных расходимостей эквивалентно специальным образом определенному усреднению по флуктуациям начальных условий

$$T_{\text{resum}}^{\mu\nu} = \int [D\alpha(\mathbf{x})D\dot{\alpha}(\mathbf{x})] F[\alpha,\dot{\alpha}] T_{\text{LO}}^{\mu\nu}[\varphi_0 + \beta + \alpha]$$

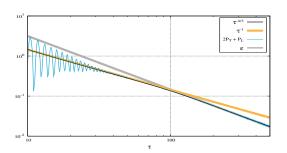
• Распределение  $F[\alpha,\dot{\alpha}]$  гауссово по  $\alpha(\mathbf{x})$  и  $\dot{\alpha}(\mathbf{x})$ :

$$\langle \alpha(\mathbf{x})\alpha(\mathbf{y})\rangle = \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} \, a_{+\mathbf{k}}(0,\mathbf{x})a_{-\mathbf{k}}(0,\mathbf{y}) ,$$

$$\langle \dot{\alpha}(\mathbf{x})\dot{\alpha}(\mathbf{y})\rangle = \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} \, \dot{a}_{+\mathbf{k}}(0,\mathbf{x})\dot{a}_{-\mathbf{k}}(0,\mathbf{y})$$

### Скалярная модель с продольным разлетом

K. Dusling et. al., arXiv:1206.3336



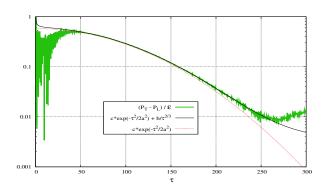
- После начальных осцилляций устанавливается режим  $\epsilon = 2P_{\scriptscriptstyle T} + P_{\scriptscriptstyle L}$
- Из точного закона сохранения

$$\frac{\partial \epsilon}{\partial \tau} + \frac{\epsilon + P_{L}}{\tau} = 0$$

следует, что  $\epsilon \sim \tau^{-1}$  при малых  $P_{_L}$  и  $\epsilon \sim \tau^{-4/3}$  при  $P_{_L} = P_{_T} = \epsilon/3$ 

# Скалярная модель с продольным разлетом: релаксация давления

K. Dusling et. al., arXiv:1206.3336

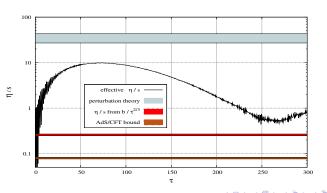


• Экспоненциальная релаксация давления (вместо ожидаемой степенной) является следствием нестабильностей.

# Скалярная модель с продольным разлетом: эффективная вязкость

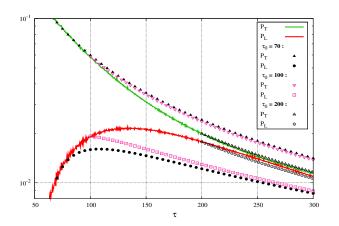
• Эффективная вязкость определяется соотношениями

$$P_{\tau} = \frac{\epsilon}{3} + \frac{2}{3\tau} \left[ \frac{\eta}{s} \right]_{\text{eff}} \epsilon^{3/4} \quad , \quad P_{L} = \frac{\epsilon}{3} - \frac{4}{3\tau} \left[ \frac{\eta}{s} \right]_{\text{eff}} \epsilon^{3/4} .$$



#### Скалярная модель с продольным разлетом

• Сравнение полевого и гидродинамического расчетов:



• Релаксация в гидродинамике (треугольники) существенно медленнее! Малый взрыв

09.04.2013

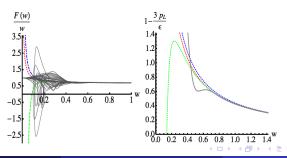
35 / 40

# Голографическая вязкая гидродинамика ${\it N}=4$ SYM плазмы

V. Heller, R. Janik, P. Witaszuk, PRL 108 (2012), 201602

Технология AdS/CFT позволяет записать уравнения гидродинамики  $\partial_{\mu}T^{\mu\nu}=0$  для одномерного буст-инвариантного продольного разлета N=4 SYM плазмы в следующем виде:

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}; \quad \frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \dots$$



#### Анизотропная гидродинамика

 Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления

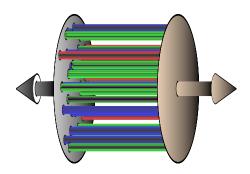
### Анизотропная гидродинамика

- Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления
- Для применимости вязкой гидродинамики наличие локального термодинамического равновесия не обязательно

### Анизотропная гидродинамика

- Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления
- Для применимости вязкой гидродинамики наличие локального термодинамического равновесия не обязательно
- Необходимы дальнейшие количественные исследования как в режиме слабой связи (эффективная гидродинамика анизотропной неустойчивой/турбулентной среды), так и в режиме сильной связи

## После соударения: глазма



На начальной стадии соударения образуются хромоэлектрические и хромомагнитные трубки:

$$E^{z} = ig \left[ A_{(1)}^{i}, A_{(2)}^{i} \right]$$

$$B^{z} = ig \epsilon^{ij} \left[ A_{(1)}^{i}, A_{(2)}^{j} \right]$$

• Для глазменной конфигурации полей  ${\bf E}_{\mu}^a = \lambda {\bf B}_{\mu}^a$  начальный тензор энергии-импульса существенно анизотропен:

$$\langle \mathcal{T}^{\mu 
u}( au=0^+,\eta,\mathbf{x}_\perp)
angle = egin{pmatrix} \epsilon & & & & \ & \epsilon & & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

• Для глазменной конфигурации полей  ${\bf E}_{\mu}^a = \lambda {\bf B}_{\mu}^a$  начальный тензор энергии-импульса существенно анизотропен:

$$\langle \mathcal{T}^{\mu 
u}( au=0^+,\eta,\mathbf{x}_\perp)
angle = egin{pmatrix} \epsilon & & & & \ & \epsilon & & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

 Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости

• Для глазменной конфигурации полей  ${\bf E}_{\mu}^a = \lambda {\bf B}_{\mu}^a$  начальный тензор энергии-импульса существенно анизотропен:

$$\langle \mathcal{T}^{\mu 
u}( au=0^+,\eta,\mathbf{x}_\perp)
angle = egin{pmatrix} \epsilon & & & & \ & \epsilon & & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

- Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости
- Суммирование по соответствующим секулярным расходимостям приводит к картине, в которой глазма переходит в турбулентную фазу

• Для глазменной конфигурации полей  ${\bf E}_{\mu}^a = \lambda {\bf B}_{\mu}^a$  начальный тензор энергии-импульса существенно анизотропен:

$$\langle \mathcal{T}^{\mu 
u} ig( au = 0^+, \eta, \mathbf{x}_\perp ig) 
angle = egin{pmatrix} \epsilon & & & & \ & \epsilon & & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

- Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости
- Суммирование по соответствующим секулярным расходимостям приводит к картине, в которой глазма переходит в турбулентную фазу
- Вопрос о скорости изотропизации для задачи с продольным разлетом пока не решен

#### Выводы

• Теория, при несомненной глубине рассмотрения, отстает от эксперимента