Физика Малого Взрыва на LHC

А.В. Леонидов

Физический институт РАН

VI Черенковские чтения, 09.04.2013

Collider	\sqrt{s}_{NN} GeV/c
AGS	5.4
SPS	19
RHIC	200
LHC	2750 (5500)

Эксперименты с тяжелыми ионами на LHC: ALICE, ATLAS, CMS, (?) AFTER@LHC

★ ∃ →

Малый взрыв: соударение ядер свинца на LHC

 Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!

- Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!
- Доминирующий продольный разлет, медленное формирование радиального расширения.

- Начальное перекрытие, формирование области с высокой плотностью энергии. Поперечный размер начальной области перекрытия в соударениях ядер на LHC порядка 0.1 фм!
- Доминирующий продольный разлет, медленное формирование радиального расширения.
- Изотропизация, формирование разреженного потока конечных адронов

Множественность

• Множественность в *AA* соударениях растет с энергией быстрее, чем в *pp*.

イロト イポト イヨト イヨト

- Множественность в *AA* соударениях растет с энергией быстрее, чем в *pp*.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.

- Множественность в *AA* соударениях растет с энергией быстрее, чем в *pp*.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.
- Измерение множественности позволяет дать оценку начальной плотности энергии

$$\varepsilon \geq \frac{dE_T/d\eta}{ au_0 \pi R^2} = \frac{3}{2} \langle E_T/N \rangle \frac{dN_{\rm ch}/d\eta}{ au_0 \pi R^2}$$

- Множественность в *AA* соударениях растет с энергией быстрее, чем в *pp*.
- На LHC приведенная (нормированная на число пар провзаимодействовавших нуклонов) множественность в два раза больше, чем в соударениях протонов той же энергии.
- Измерение множественности позволяет дать оценку начальной плотности энергии

$$\varepsilon \geq \frac{dE_T/d\eta}{ au_0 \pi R^2} = \frac{3}{2} \langle E_T/N \rangle \frac{dN_{
m ch}/d\eta}{ au_0 \pi R^2}$$

• На LHC $\varepsilon \geq 15 GeV/fm^3$, что в три раза больше, чем на RHIC.

Подавление струй с большими $p_{\rm T}$

 Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.

Подавление струй с большими $p_{\rm T}$

- Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.
- На уровне спектра изучается сравнительная (по отношению к pp соударениям) вероятность регистрации струи с заданным $p_{\rm T} R_A^{\rm jet} A$, нормированная на число жестких pp- соударений $\langle N_{\rm coll} \rangle$:

$${\cal R}_{AA}^{
m jet} \;=\; rac{d{\cal N}_{
m jets}^{AA}/dp_{T}}{\langle{\cal N}_{
m coll}
angle d{\cal N}_{
m jets}^{PP}/dp_{T}}$$

Подавление струй с большими $p_{\rm T}$

- Можно ожидать, что формирование сильновзаимодействующей среды большой плотности приводит к существенным потерям энергии жестких частиц, распространяющихся в такой среде. Большой интерес представляет изучение этого вопроса на уровне адронных струй с большими энергиями.
- На уровне спектра изучается сравнительная (по отношению к pp соударениям) вероятность регистрации струи с заданным $p_T R_A^{\rm jet} A$, нормированная на число жестких pp- соударений $\langle N_{\rm coll} \rangle$:

$${\cal R}_{AA}^{
m jet} \;=\; rac{d{\cal N}_{
m jets}^{AA}/dp_{T}}{\langle{\cal N}_{
m coll}
angle d{\cal N}_{
m jets}^{pp}/dp_{T}}$$

 На уровне баланса энергии - импульса в заданном соударении изучается энергетический дисбаланс между двумя струями с наибольшими энергиями в событии А_J:

$$A_J = \frac{p_{\mathsf{T}}^1 - p_{\mathsf{T}}^2}{p_{\mathsf{T}}^1 + p_{\mathsf{T}}^2}$$

Подавление струй с большими р_т: спектр

А.В. Леонидов (ФИАН)

09.04.2013 8 / 40

Подавление струй с большими *р*т: асимметрия

Подавление струй с большими рт: асимметрия

Подавление струй с большими p_{T} : асимметрия в системе γ - струя

А.В. Леонидов (ФИАН)

09.04.2013 11 / 40

Спектр по поперечным импульсам

А.В. Леонидов (ФИАН)

 ▶ < ≣ ▶</td>
 ≣
 ∽ < <</td>

 09.04.2013
 12 / 40

Спектр по поперечным импульсам Малые *р*т

А.В. Леонидов (ФИАН)

09.04.2013 13 / 40

• Спектр "элементарного"источника (*pp*, *e*⁺*e*⁻):

$$Erac{dn}{d^3p}\sim V \; E \; e^{-E/T_H}$$

• Спектр "элементарного"источника (*pp*, *e*⁺*e*⁻):

$$Erac{dn}{d^3p}\sim V \ E \ e^{-E/T_H}$$

 Радиальный разлет со средней скоростью (*β_T*) приводит к изменению спектра:

$$T_{\rm eff} = \begin{cases} T_H + m \langle \beta_T \rangle^2, & p_T \leq 2 \ GeV/c \\ T_H \left(\frac{1 + \langle \beta_T \rangle}{1 - \langle \beta_T \rangle} \right)^{1/2}, & p_T \gg m \end{cases}$$

• Спектр "элементарного"источника (*pp*, *e*⁺*e*⁻):

$$Erac{dn}{d^3p}\sim V \ E \ e^{-E/T_H}$$

 Радиальный разлет со средней скоростью (*β_T*) приводит к изменению спектра:

$$T_{\rm eff} = \begin{cases} T_H + m \langle \beta_T \rangle^2, & p_T \le 2 \ GeV/c \\ T_H \left(\frac{1 + \langle \beta_T \rangle}{1 - \langle \beta_T \rangle} \right)^{1/2}, & p_T \gg m \end{cases}$$

• На LHC $\langle \beta_T \rangle \simeq 0.65$, т.е. наблюдается ультрарелятивистское радиальное расширение горячей зоны

Подавление рождения частиц в центральных соударениях

А.В. Леонидов (ФИАН)

Малый взрыв

09.04.2013 15 / 40

Пособытийная азимутальная асимметрия

09.04.2013 16 / 40

▲ロト ▲圖ト ▲屋ト ▲屋ト

Пособытийная азимутальная асимметрия

• Большие пособытийные флуктуации азимутального распределения частиц.

А.В. Леонидов (ФИАН)

Малый взрыв

09.04.2013 16 / 40

Эллиптический поток в нецентральных соударениях

Эллиптический поток в нецентральных соударениях

 Разность давлений по осям эллипсоида в горячей зоне приводит к пособытийной азиммутальной асимметрии импульсов конечных частиц в событии - эллиптическому потоку.

А.В. Леонидов (ФИАН)

Малый взрыв

Направленный, эллиптический и треугольный потоки

Направленный, эллиптический и треугольный потоки

 Направленный, эллиптический и треугольный потоки. Нечетные потоки характеризуют флуктуации формы исходной плотной горячей области.

Распределения вероятностей $P(v_2)$, $P(v_3)$ и $P(v_4)$

• На LHC впервые измерены распределения $P(v_n)!$

(3)

Азимутальная асимметрия: скейлинг по $p_{\rm T}$

 Перемасштабированные к одинаковому среднему р_т распределения P(v₂), P(v₃) и P(v₄) для разных интервалов поперечных импульсов совпадают.

А.В. Леонидов (ФИАН)

09.04.2013 20 / 40

Большой взрыв: стадии

Малый взрыв: стадии

Гидродинамическое описание экспериментальных данных

C. Gale et al., 1209.6330

$$ullet$$
 Уравнения (вязкой) 3+1 гидродинамики $\partial_\mu T^{\mu
u}=0$

イロト イポト イヨト イヨト

C. Gale et al., 1209.6330

- Уравнения (вязкой) 3+1 гидродинамики $\partial_\mu T^{\mu
 u}=0$
- Уравнение состояния $p = f(\epsilon)$ берется в виде интерполяции КХД на решетке

C. Gale et al., 1209.6330

- Уравнения (вязкой) 3+1 гидродинамики $\partial_\mu T^{\mu
 u}=0$
- Уравнение состояния $p = f(\epsilon)$ берется в виде интерполяции КХД на решетке
- Начальные условия $T^{\mu\nu}(\tau = \tau_0, \eta, \mathbf{x}_{\perp})$ берутся при $\tau = \tau_0 = 0.2$ фм (!!) сшивкой решений классических уравнений YM с начальными конфигурациями из модели CGC.

C. Gale et al., 1209.6330

- Уравнения (вязкой) 3+1 гидродинамики $\partial_\mu T^{\mu
 u}=0$
- Уравнение состояния $p = f(\epsilon)$ берется в виде интерполяции КХД на решетке
- Начальные условия $T^{\mu\nu}(\tau = \tau_0, \eta, \mathbf{x}_{\perp})$ берутся при $\tau = \tau_0 = 0.2$ фм (!!) сшивкой решений классических уравнений YM с начальными конфигурациями из модели CGC.
- Для описания азимутальной асимметрии необходим явный учет флуктуаций формы начальных конфигураций

Гидродинамика: спектр по р_т

24 / 40

Гидродинамика: Направленный поток v_1

А.В. Леонидов (ФИАН)

09.04.2013 25 / 40

Гидродинамика: Распределения $P(v_n)$

А.В. Леонидов (ФИАН)

Малый взрыв

 Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.
- Основная теоретическая задача изучение коллективных гидродинамических режимов в терминах квантовой теории поля.

- Для описания экспериментальных данных в рамках стандартной вязкой гидродинамики необходимы малая вязкость и (нереалистически) ранняя изотропизация и термализация
- Аномально малая вязкость и ранние изотропизация и термализация могут обеспечиваться режимом сильной связи или турбулентностью в режиме слабой связи.
- Основная теоретическая задача изучение коллективных гидродинамических режимов в терминах квантовой теории поля.
- Для режима слабой связи основой рассмотрения является картина квантовых флуктуаций над сильным классическим полем. Такое рассмотрение естественно из-за аномально больших чисел заполнения глюонных мод в области перекрытия.

Скалярная модель: древесное приближение

T. Epelbaum et al., Nucl. Phys. A872 (2011), 210

- Эволюция скалярного поля, генерируемого сильным источником:
- Лагранжиан:

$$\mathcal{L} \equiv rac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - \underbrace{rac{g^2}{4!} \phi^4}_{V(\phi)} + J \phi \qquad J \sim heta (-x^0) rac{Q^3}{g}$$

• Древесный тензор энергии - импульса

$$T^{\mu\nu}_{\rm LO}(x) = \partial^{\mu}\varphi \partial^{\nu}\varphi - g^{\mu\nu} \left[\frac{1}{2}(\partial_{\alpha}\varphi)^2 - \frac{g^2}{4!}\varphi^4\right],$$
$$\Box\varphi + \frac{g^2}{3!}\varphi^3 = J, \quad \lim_{x^0 \to -\infty}\varphi(x^0, \mathbf{x}) = 0$$

Скалярная модель: суммирование секулярных расходимостей

- Учет квантовых флуктуаций выявляет наличие неустойчивостей (параметрический резонанс).
- Суммирование соответсвующих секулярных расходимостей:

$$\begin{aligned} T^{\mu\nu}_{\rm resum}(\mathbf{x}) &\equiv & \exp\left[\int d^3 \mathbf{u} \,\beta \cdot \mathbb{T}_{\mathbf{u}} \right. \\ &+ & \frac{1}{2} \int d^3 \mathbf{u} d^3 \mathbf{v} \int \frac{d^3 \mathbf{k}}{(2\pi)^3 2k} [\mathbf{a}_{+\mathbf{k}} \cdot \mathbb{T}_{\mathbf{u}}] [\mathbf{a}_{-\mathbf{k}} \cdot \mathbb{T}_{\mathbf{v}}] \right] T^{\mu\nu}_{\rm LO}(\mathbf{x}) \end{aligned}$$

• \mathbb{T}_{u} - генератор сдвига на гиперповерхности $x^{0} = 0$:

$$\mathbf{a} \cdot \mathbb{T}_{\mathbf{u}} \equiv \mathbf{a}(0,\mathbf{u}) \frac{\delta}{\delta \varphi_0(\mathbf{u})} + \dot{\mathbf{a}}(0,\mathbf{u}) \frac{\delta}{\delta \dot{\varphi}_0(\mathbf{u})} \Rightarrow \mathbf{a}(x) = \int d^3 \mathbf{u} \left[\mathbf{a} \cdot \mathbb{T}_{\mathbf{u}}\right] \varphi(x)$$

Скалярная модель: суммирование секулярных расходимостей

• Поля $a_{\pm {f k}}$ - малые возмущения на фоне arphi; eta - однопетлевая поправка к arphi,

$$\begin{bmatrix} \Box + V''(\varphi) \end{bmatrix} a_{\pm \mathbf{k}} = 0 , \qquad \lim_{x^0 \to -\infty} a_{\pm \mathbf{k}}(x) = e^{\pm i \mathbf{k} \cdot x} ,$$
$$\begin{bmatrix} \Box + V''(\varphi) \end{bmatrix} \beta = -\frac{1}{2} V'''(\varphi) \int \frac{d^3 \mathbf{k}}{(2\pi)^3 2k} a_{-\mathbf{k}} a_{+\mathbf{k}},$$
$$\lim_{x^0 \to -\infty} \beta(x) = 0$$

Скалярная модель: суммирование секулярных расходимостей

 Суммирование секулярных расходимостей эквивалентно специальным образом определенному усреднению по флуктуациям начальных условий

$$T_{\rm resum}^{\mu\nu} = \int [D\alpha(\mathbf{x})D\dot{\alpha}(\mathbf{x})] F[\alpha,\dot{\alpha}] T_{\rm LO}^{\mu\nu}[\varphi_0 + \beta + \alpha]$$

• Распределение $F[\alpha, \dot{\alpha}]$ гауссово по $\alpha(\mathbf{x})$ и $\dot{\alpha}(\mathbf{x})$:

$$\begin{array}{lll} \left\langle \alpha(\mathbf{x})\alpha(\mathbf{y})\right\rangle &=& \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} \; a_{+\mathbf{k}}(0,\mathbf{x})a_{-\mathbf{k}}(0,\mathbf{y}) \; , \\ \left\langle \dot{\alpha}(\mathbf{x})\dot{\alpha}(\mathbf{y})\right\rangle &=& \int \frac{d^3\mathbf{k}}{(2\pi)^3 2k} \; \dot{a}_{+\mathbf{k}}(0,\mathbf{x})\dot{a}_{-\mathbf{k}}(0,\mathbf{y}) \end{array}$$

Скалярная модель с продольным разлетом

K. Dusling et. al., arXiv:1206.3336

• После начальных осцилляций устанавливается режим $\epsilon = 2P_{\tau} + P_{\mu}$

• Из точного закона сохранения

$$\frac{\partial \epsilon}{\partial \tau} + \frac{\epsilon + P_{L}}{\tau} = 0$$

следует, что $\epsilon \sim \tau^{-1}$ при малых $P_{_L}$ и $\epsilon \sim \tau^{-4/3}$ при $P_{_L} = P_{_T} = \epsilon/3$

Скалярная модель с продольным разлетом: релаксация давления

K. Dusling et. al., arXiv:1206.3336

 Экспоненциальная релаксация давления (вместо ожидаемой степенной) является следствием нестабильностей.

А.В. Леонидов (ФИАН)

09.04.2013 33 / 40

Скалярная модель с продольным разлетом: эффективная вязкость

• Эффективная вязкость определяется соотношениями

$$P_{\tau} = rac{\epsilon}{3} + rac{2}{3 au} \left[rac{\eta}{s}
ight]_{ ext{eff}} \epsilon^{3/4} \quad , \quad P_{\scriptscriptstyle L} = rac{\epsilon}{3} - rac{4}{3 au} \left[rac{\eta}{s}
ight]_{ ext{eff}} \epsilon^{3/4} \; .$$

Скалярная модель с продольным разлетом

• Сравнение полевого и гидродинамического расчетов:

• Релаксация в гидродинамике (треугольники) существенно медленнее!

А.В. Леонидов (ФИАН)

 ▶<<</th>
 ≥
 >
 >
 >

 09.04.2013
 35 / 40

- ₹ 🖬 🕨

Голографическая вязкая гидродинамика N = 4 SYM плазмы

V. Heller, R. Janik, P. Witaszuk, PRL 108 (2012), 201602

Технология AdS/CFT позволяет записать уравнения гидродинамики $\partial_{\mu}T^{\mu\nu} = 0$ для одномерного буст-инвариантного продольного разлета N = 4 SYM плазмы в следующем виде:

 Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления

- Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления
- Для применимости вязкой гидродинамики наличие локального термодинамического равновесия не обязательно

- Вязкая гидродинамика применима (совпадение траекторий с разными начальными условиями) при значительной анизотропии давления
- Для применимости вязкой гидродинамики наличие локального термодинамического равновесия не обязательно
- Необходимы дальнейшие количественные исследования как в режиме слабой связи (эффективная гидродинамика анизотропной неустойчивой/турбулентной среды), так и в режиме сильной связи

После соударения: глазма

На начальной стадии соударения образуются хромоэлектрические и хромомагнитные трубки:

$$E^{z} = ig \left[A_{(1)}^{i}, A_{(2)}^{i}\right]$$
$$B^{z} = ig \epsilon^{ij} \left[A_{(1)}^{i}, A_{(2)}^{j}\right]$$

 Для глазменной конфигурации полей **E**^a_µ = λ**B**^a_µ начальный тензор энергии-импульса существенно анизотропен:

$$\langle T^{\mu
u}(au=0^+,\eta,\mathbf{x}_{\perp})
angle = egin{pmatrix} \epsilon & & \ & \epsilon & \ & & \epsilon & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

 Для глазменной конфигурации полей **E**^a_µ = λ**B**^a_µ начальный тензор энергии-импульса существенно анизотропен:

$$\langle T^{\mu
u}(au=0^+,\eta,\mathbf{x}_{\perp})
angle = egin{pmatrix} \epsilon & & \ & \epsilon & \ & & \epsilon & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

 Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости

 Для глазменной конфигурации полей **E**^a_µ = λ**B**^a_µ начальный тензор энергии-импульса существенно анизотропен:

$$\langle T^{\mu
u}(au=0^+,\eta,\mathbf{x}_{\perp})
angle = egin{pmatrix} \epsilon & & \ & \epsilon & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

- Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости
- Суммирование по соответствующим секулярным расходимостям приводит к картине, в которой глазма переходит в турбулентную фазу

 Для глазменной конфигурации полей **E**^a_µ = λ**B**^a_µ начальный тензор энергии-импульса существенно анизотропен:

$$\langle T^{\mu
u}(au=0^+,\eta,\mathbf{x}_{\perp})
angle = egin{pmatrix} \epsilon & & \ & \epsilon & \ & & \epsilon & \ & & -\epsilon \end{pmatrix}$$

- Квантовые флуктуации глазмы порождают (вайбелевские?) неустойчивости
- Суммирование по соответствующим секулярным расходимостям приводит к картине, в которой глазма переходит в турбулентную фазу
- Вопрос о скорости изотропизации для задачи с продольным разлетом пока не решен

• Теория, при несомненной глубине рассмотрения, отстает от эксперимента