LHCb эксперимент:

последние результаты

по изучению В-физики

Виктор Егорычев

Москва, Апрель 2013

LHCb эксперимент

Поиск Новой Физики (НФ) в изучении:

-нарушения СР-симметрии - редких распадов

частиц, содержащие с- и bкварки

LHCb эксперимент

LHCb: поиск Новой Физики

- СМ дает хорошее описание экспериментальных результатов
- Наиболее точные проверки СМ сделаны с помощью изучений системы В-мезонов

- Новая Физика?
 - 1. Изучение СР-симметрии

➢ любое несоответствие в описании Треугольника Унитарности могло бы указать на существование Новой Физики

2. Редкие распады

≻ прямое обнаружение – новые частицы могут быть непосредственно открыты на новых коллайдерах (ATLAS, CMS)

косвенное наблюдение – виртуальные новые частицы (в петлевых процессах) могут изменить вероятности распадов, параметры СР-симметрии, кинематические распределения...

Косвенные измерения/предсказания

• открытие третьего поколения кварков

1973 г. – предсказано существование 3-го поколения (Kobayashi, Mascawa) для описания СР-нарушения в системе нейтральных Кмезонов (1964 г.) 1977 г. – открытие b-кварка

1995 г. – открытие t-кварка

• Открытие нейтральных слабых токов (Zбозона)

1973 г. (ЦЕРН, п.к. "Гаргамель") – $\nu + N \rightarrow \nu + N$

1983 г. – измерение массы Z-бозона

Наблюдение Новой Физики (шутка)

← открытая дверь

замочная скважина \rightarrow

LHCb эксперимент

- преимущества изучения *b*-физики на адронных коллайдерах
 - большое сечение рождения *b*-кварков при энергиях LHC

 $\sigma_{bb} \sim 500$ (280) µb @ $\sqrt{s=14}$ (7) ТэВ (на e⁺ e⁻ машинах в Y(4S) $\sigma_{bb} \sim 1$ nb)

- возможность изучения: B^{\pm} , B^0 , B_s , B_c , Λ_b , ...
- трудности
 - высокая множественность заряженных частиц (>50 треков в аксептансе)
 - большие сечения неупругих процессов $\sigma_{inel} \sim 100 \text{ mb}$
- особенности
 - L ~ 3-4 х 10³² см⁻² сек⁻¹
- аксептанс
 - одноплечевой передний спектрометр:

•2 < η < 5 \rightarrow | η | < 2.5 @ ATLAS/CMS • 10-300 мрад

• bb пара рождается в одну и туже полусферу

LHCb спектрометер

LHCb спектрометр

Эксплуатационные характеристики спектрометра

- Импульсное разрешение 0.35-0.55%
- Массовое разрешение в диапазоне 7-20 MeV/c²
- Наиболее точные измерения только на данных 2010 (35 pb⁻¹):

Измерение массы

LHCb спектрометр

- Level-О уровень:
 - Поиск кандидатов с большим поперечным импульсом (μ, h, e, γ)

- Триггер высшего уровня (HLT1, HLT2):
 - ПК ферма ~1500 ПК (16-ядерные)
 - HLT1: трековая информация, прицельный параметр
 - HLT2: полная реконструкция и отбор
 - Изменяющаяся конфигурация
 Trigger Configuration Key (TCK)
- Характерная эффективность:
 - ~30% адронных событий
 - ~90% димюонных событий
 - ~90% радиационных распадов В-мезонов

Набор данных (особенности)

Peak Inst Luminosity (10^30/cm^2*s^1) 800 700 600 рабочие значение 500 400 300 200 планируемое значение 100 1700 1800 1900 2000 2100 2200 LHC Fill Number

постоянная светимость во время набора данных

- •"развод" сталкивающихся пучков во время сеанса
- •нетривиальное и прекрасно работающее решение

 $\mathcal{L} \sim 3-4 \times 10^{32} \text{ см}^{-2} \text{ сек}^{-1}$ значительно выше планируемого значения

27/11 Date

Физическая программа LHCb

- В распады в чармониум
 - Измерение фаз В_s и В_d осцилляций
 - В → J/ψ X и др.
- В распады в открытый чарм
 - − СКМ угол γ из В \rightarrow D К распадов

• Редкие распады

- лептонные, полу-лептонные и радиационные распады
- Запрещенные распады в СМ

• Очарованная физика

- Параметры смешивания и СРнарушения
- Рождение открытого чарма и спектроскопия
- Редкие распады чарма

- Распады В без образования чарма – изучение $B \rightarrow h h^{(`)}$ и $B \rightarrow h h^{(`)}h^{(``)}$
- Полулептонные распады В
 Изучение СР в смешивании

- В адроны & кварконий
 - Рождение и спектроскопия В адронов и кваркония
- КХД, электрослабое вз-вие & экзотика
 - Рождение электрослабых бозонов, PDFs
 - Новые долгоживущие частицы

Физическая программа LHCb

открытая/закрытая прелесть

открытый/закрытый чарм

Нарушение СР-симметрии в $B_s \rightarrow J/\psi \phi$

 $B_s \to J/\psi \ \phi$ различия В $^0 \to J/\psi \ K^0_{\ s}$:

✓ разность масс $\Delta m_s >> \Delta m_d$ – необходимо очень хорошее временное разрешение для разделения осцилляций

✓ разность ширин $\Delta \Gamma_s >> \Delta \Gamma_d$

✓ конечное состояние $B_s \rightarrow J/\psi K^+ K^-$ системы – сумма собственных состояний СР-четных и СР-нечетных с вкладом 4 поперечных амплитуд (P → VV) → угловой анализ

К⁺ К⁻ в Р волне : амплитуды $A_{\perp}(t), A_{\parallel}(t), A_{0}(t) \rightarrow$ конечное состояние СР-четное и СР-нечетное

 $K^+ K^-$ в S волне : амплитуда $A_s(t) \rightarrow$ конечное состояние CP-нечетное

Изучение $B_s \to J/\psi \phi$ (разрешение)

- t > 0.3 ps
- N ~21200 событий
- $\sigma_m \sim 8 \text{ MeV/c}^2$
- практически без фона

 отбор без ограничений на время жизни и прицельный параметр

17

• σ_τ ~ 45 ps

Изучение $B_s \rightarrow J/\psi \phi (dum)$

∆Г≠0, а какой знак?!

Изучение $B_s \to J/\psi \phi$ (знак)

(Rad

trong phase

1020

- неопределенность: ($\Delta \Gamma_s$, ϕ_s , δ_{\perp} , δ_{\parallel} , δ_s) \Leftrightarrow (- $\Delta \Gamma_s$, π - ϕ_s , - δ_{\perp} , π δ_{\parallel} , - δ_s)
- повторить анализ в широком массовом интервале М(К+К-), не только вокруг ф(1020)
- 4 интервала в диапазоне 988 $\, < M(K^+K^\text{-}) < 1050 \; MeV/c^2$
- •ожидается
 - ✓ полная амплитуда распада сумма вкладов Р- и S-волн
 - ✓ фазы Р волны увеличивается с ростом М(К⁺ К⁻) вклад ф(1020)
 - ✓ фаза S волны слабо изменяется (вклад $f_0(980)$ и нерезон. распад)
 - $\checkmark \Rightarrow \delta_{S^{\perp}} = \delta_S$ δ_{\perp} убывает

Нарушение СР-симметрии в $B_s \to J/\psi \phi$ LHCb-CONF-2012-002

Parameter	Value	Stat.	Syst.		LHCb	• • • •		•••••	Conf. Levels
$\Gamma_s [ps^{-1}]$	0.6580	0.0054	0.0066	0.18	Prelimin	ary			68% C.L.
$\Delta \Gamma_{\rm s} [\rm ns^{-1}]$	0.116	0.018	0.006					······	•••• 90% C.L.
$ A_{\perp}(0) ^2$	0.246	0.010	0.013	0.14				a state of the sta	Standard Model
$ A_0(0) ^2$	0.523	0.007	0.024	0.1)))	4
$F_{\rm S}$	0.022	0.012	0.007	0.08		and the second second		and an	
$\delta_{\perp} \text{ [rad]}$	2.90	0.36	0.07	0.06		3444 (34 44 4			
δ_{\parallel} [rad]	[2.81,	[3.47]	0.13	0.04					
δ_s [rad]	2.90	0.36	0.08	0.02					
ϕ_s [rad]	-0.001	0.101	0.027	0E.	-0.4	-0.2	0	0.2	0.4
		•	8	2		012	•	012	و [rad]

Значения $\Delta \Gamma_s$ и ϕ_s сравнимы с предсказаниями СМ

Только 1(!) год набора данных - лучшая точность определения ϕ_s

Нарушение СР-симметрии в $B_s \to J/\psi \phi$

СР-нарушение в $B_s \rightarrow J/\psi f_J$

B_s → J/ψ f₀(980), f₀(980) → $\pi^+\pi^-$ ✓ чистое CP-нечетное состояние ✓ ϕ_s измеряется без углового анализа

LHCb, PLB 707 (2012) 49722

СР-нарушение в $B_s \rightarrow J/\psi \pi^+ \pi^-$

 $B_s \rightarrow J/\psi \pi^+ \pi^-$

 $\checkmark 775 < M(\pi^+ \pi^-) < 1550 \text{ MeV/c}^2$

✓ Угловой анализ позволяет сделать заключение, что это СР-нечетная система (>97.7%
 @ 95% CL)

✓ измеренное значение $\phi_s = -0.02 \pm 0.17 \pm 0.02$ LHCb-PAPER-2012-005, LHCb-PAPER-2012-006 2000 1 fb⁻¹ LHCb LHCb 1800 800 Preliminary Preliminary ມດ 1600 1400 600 stu 1200 100 100 f₀(980) B^0 $B_s \rightarrow J/\psi \pi^+ \pi^-$ 500 7421±105 signal evts 1000 800E NEW ! f₀(1370 600E 200E 400 100 200 5400 5500 5300 500 1000 1500 2000 $m_{J/\psi\pi^{+}\pi^{-}}$ (MeV) m(π⁺π⁻) (MeV) LHCb: $B_s \rightarrow J/\psi \phi \mu B_s \rightarrow J/\psi \pi^+ \pi^- (1 \text{ fb}^{-1})$: $\phi_s^{SM} = -0.036 \pm 0.002$ $\phi_{\rm s} = -0.002 \pm 0.083 \pm 0.027$ 23

Изучение редких распадов

Радиационные распады $b \rightarrow s \gamma$

Прямое СР-нарушение $B^0 \rightarrow K^* \gamma$

PRD 72 (2005) 014013

В согласии с СМ: -0.0061 ± 0.0043

Редкий распад $B_{ m s} ightarrow \mu^+ \mu^-$

Один из наиболее чувствительных каналов для поиска НФ

Стандартная Модель – очень редкий распад (FCNC, подавление по спиральности)

 $BR(B_s \rightarrow \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$

MSSM: BR \propto tan ⁶ β / M_A⁴ – несколько порядков \uparrow

Ситуация на конец октября 2012 г. (95% CL)

 $\begin{array}{ll} \text{ATLAS: BR(B}_{s} \rightarrow \mu^{+}\mu^{-}) < 22 \ x \ 10^{-9} \\ \text{CMS} & : \text{BR(B}_{s} \rightarrow \mu^{+}\mu^{-}) < \ 7.7 \ x \ 10^{-9} \\ \text{LHCb} & : \text{BR(B}_{s} \rightarrow \mu^{+}\mu^{-}) < \ 4.5 \ x \ 10^{-9} \end{array}$

LHC объединенные данные $BR(B_{s}\!\rightarrow\!\mu^{\!+}\mu^{\!-})\ <\ 4.2\ x\ 10^{-9}$

ARGUS – 25 лет назад DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY DESY 87-111 September 1987 B MESON DECAYS INTO CHARMONIUM STATES

ABSTRACT. Using the ARGUS detector at the e^+e^- storage ring DORIS II, we have studied the colour-suppressed decays $B \to J/\psi X$ and $B \to \psi' X$. We find the inclusive branching ratios for these two channels to be $(1.07 \pm 0.16 \pm$ 0.19)% and $(0.46 \pm 0.17 \pm 0.11)\%$ respectively. From a sample of reconstructed exclusive events the masses of the B^0 and B^+ mesons are determined to be $(5279.5 \pm 1.6 \pm 3.0) \ MeV/c^2$ and $(5278.5 \pm 1.8 \pm 3.0) \ MeV/c^2$ respectively. Branching ratios are determined from five events of the type $B^0 \to J/\psi K^{*0}$ and three of $B^+ \to J/\psi K^+$. In the same data sample a search for $B^0 \to e^+e^-$, $\mu^+\mu^-$ and $\mu^\pm e^\mp$ leads to upper limits for such decays.

Редкий распад $B_{ m s} ightarrow \mu^+ \mu^-$

0.0

0

10

20

 $10^9 \times BR(B_s \rightarrow \mu^+\mu^-)$

30

40

Результат сравним с предсказаниями СМ Сильное ограничение на существование НФ

Редчайший распад $B^+\!\!\to\pi^+\mu^+\mu^-$

b \rightarrow d ll переход CM BR(B+ $\rightarrow \pi$ + µµ) = (2 ± 0.2) x 10⁻⁸ (Hai-Zhen et al, Commun. Theor. Phys 50) в 25 раз меньше B⁺ \rightarrow K⁺ µµ

особенность - прекрасная идентификация

предыдущее измерение Belle BR(B+ $\rightarrow \pi$ + $\mu\mu$) < 6.9 x 10⁻⁸ @ 90% CL

LHCb : BR(B+ $\rightarrow \pi + \mu \mu$) = (2.4 ± 0.6 ± 0.2) x 10⁻⁸

Один из самых редких распадов В мезонов из когда-либо наблюденных! (1 год набора данных)

Новые распады B_c^+

Распады В с чармонием в конечном состоянии

Распады В с чармонием в конечном состоянии

Квантовые числа X(3872) - $J^{PC} = 1^{++}$

 $J^{PC}=2^{\text{-+}}$ исключено со стат. точностью $>8.4\sigma$

D⁰-смешивание

arxiv:2011-1230

Модернизация LHCb

- ✓ Единый програмируемый триггер, работающий с входным потоком 40 MHz и выходным потоком 20 kHz
- ✓ набор статистики со светимостью в ~ 5-10 раз больше текущей номинальной светимости LHCb → \mathcal{L} ~ 1-2 x 10³³ cm⁻² s⁻¹

Участие российских групп

detector	sub-system	countries involved
VELO	modules & infrastructure	BR, CERN, ES, IE, NL, RU UK, US
	electronics & readout	BR, ES, CERN, CN, NL, PL, UK, US
Tracker	modules & infrastructure	CERN, CH, DE, NL, RU, UK, US
	electronics & readout	BR, CERN, CH, CN, DE, ES, FR, NL, PL, US
RICH	mechanics & infrastructure	CERN, IT, UK
	electronics & readout	CERN, IT, RO, UK
Calo	electronics & readout	ES, FR RU
Muon	chambers	IT, RU
	electronics & readout	IT
Trigger	electronics & readout	BR, CN, FR, IT

RU группы глубоко вовлечены в модернизацию трековой системы

ITEP, IHEP, INR RAS, PNPI

Традиционное участие в системе идентификации

CALO: ITEP, IHEP, INR RAS, Novosibirsk MUON: PNPI

Модернизация VELO: MSU

Модернизация трекера

• Большие загрузки для действующего ОТ -> увеличить область, перекрываемую IT
 Две опции трекера (чтобы сохранить загрузки в ОТ на разумном уровне):
 ✓ "IT большой площади на основе кремн. микрострипов" (ОТ с короткими ЦПДК)

✓ "Ценр.трекер на основе оптич. фибров (∅ = 250 мкм)" (уменьшение материала)

Swiss cross style IT detector Доля треков, перекрываемая IT увеличится с 33% до 54%

Замена центральной части на SciFi модули, покрывающие весь детектор

→ Обе опции работают со светимостью >2 x 10³³

Модернизация LHCb

Type	Observable	Current	LHCb	Upgrade	Theory
1999-1999 (Pr. 1999) 20		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s \rightarrow K^{*0} \bar{K^{*0}})$		0.07	0.02	< 0.02
~	$S(B^0 \to \phi K_S^0)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	${\cal A}^{\Delta\Gamma_s}(B_s o \phi\gamma)$	(1 <u>1</u>)	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	(-)	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	12	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta (B^0 o J/\psi K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	11-1

http://cdsweb.cern.ch/record/1333091/files/LHCC-I-018.pdf

Заключение

LHCb эксперимент в прекрасной форме

За 1 (!) год набора данных:

лучшие результаты в измерениях $B_s \rightarrow J/\psi \phi, B_s \rightarrow \mu\mu, B_d \rightarrow K^* \mu\mu, B_d \rightarrow K^* \gamma$

обнаружены новые каналы распадов B, B_s, B_c

прекрасные перспективы для изучения угла ү и редких распадов

СМ "выживает", но место для НФ еще есть

LHCb дополняет поиск новых тяжелых частиц в CMS и ATLAS

Обширные дальнейшие перспективы

Theory

- Mixing phase: $\phi_M = \arg(V_{ts}V_{tb}^*)^2$
- ▶ $B_s^0 \rightarrow J/\psi \phi$ is a $b \rightarrow c\bar{c}s$ transition, Tree (T) and Penguin (P_q) terms:

$$A_{c\bar{c}s} = V_{cs}V_{cb}^{*}(T+P_{c}) + V_{us}V_{ub}^{*}P_{u} + V_{ts}V_{tb}^{*}P_{t}$$

= $V_{cs}V_{cb}^{*}(T+P_{c}-P_{t}) + V_{us}V_{ub}^{*}(P_{u}-P_{t})$

- V_{us}V^{*}_{ub} suppressed by O(λ²) WRT V_{cs}V^{*}_{cb} so (P_u P_t) penguin pollution (δP) small
- This leaves $\phi_D = \arg(V_{cs}V_{cb}^*)$

$$\phi_s = \phi_M - 2\phi_D = \arg(V_{ts}V_{tb}^*)^2 - 2\arg(V_{cs}V_{cb}^*) + \delta P$$
$$= 2\arg\left[\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right] = -2\beta_s = -2\eta\lambda^2 - \eta\lambda^4 - O(\lambda^6)$$

Theory

${\rm B}^0_{\rm s} \,{ ightarrow}\, {\rm J}/\psi \,\phi$ Decay Rates

Signs in blue are tag dependent and change for B⁰_s

$$\begin{array}{rcl} \mathsf{A}_{1} & = & |\mathsf{A}_{0}|^{2} e^{-\Gamma_{S}t} \left[\cosh\left(\frac{\Delta\Gamma_{S}}{2}t\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \right] \\ \mathsf{A}_{2} & = & |\mathsf{A}_{\parallel}|^{2} e^{-\Gamma_{S}t} \left[\cosh\left(\frac{\Delta\Gamma_{S}}{2}t\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \right] \\ \mathsf{A}_{3} & = & |\mathsf{A}_{\perp}|^{2} e^{-\Gamma_{S}t} \left[\cosh\left(\frac{\Delta\Gamma_{S}}{2}t\right) + \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] = \sin\phi_{S} \sin(\Delta m_{s}t) \right] \\ \mathsf{A}_{4} & = & |\mathsf{A}_{\parallel}||\mathsf{A}_{\perp}|e^{-\Gamma_{S}t} \left[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] \\ = & \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{S} \sin(\Delta m_{s}t) = \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) \right] \\ \mathsf{A}_{5} & = & |\mathsf{A}_{0}||\mathsf{A}_{\parallel}|e^{-\Gamma_{S}t}\cos(\delta_{\parallel} - \delta_{0}) \left[\cosh\left(\frac{\Delta\Gamma_{S}}{2}t\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] \\ = & \sin\phi_{S}\sin(\Delta m_{s}t) \right] \\ \mathsf{A}_{6} & = & |\mathsf{A}_{0}||\mathsf{A}_{\perp}|e^{-\Gamma_{S}t} \left[-\cos(\delta_{\perp} - \delta_{0})\sin\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] \\ = & \cos(\delta_{\perp} - \delta_{0})\cos\phi_{S}\sin(\Delta m_{s}t) = \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m_{s}t) \right] \\ \mathsf{A}_{7} & = & |\mathsf{A}_{S}|^{2}e^{-\Gamma_{S}t} \left[\cosh\left(\frac{\Delta\Gamma_{S}}{2}t\right) + \cos\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] = \sin\phi_{S}\sin(\Delta m_{s}t) \\ \mathsf{A}_{8} & = & |\mathsf{A}_{S}||\mathsf{A}_{\parallel}|e^{-\Gamma_{S}t} \left[-\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \right] \\ = & \sin(\delta_{\parallel} - \delta_{S})\cos\phi_{S}\sin(\Delta m_{s}t) + \cos(\delta_{\parallel} - \delta_{S})\cos(\Delta m_{s}t) \right] \\ \mathsf{A}_{9} & = & |\mathsf{A}_{S}||\mathsf{A}_{\perp}|e^{-\Gamma_{S}t} \left[-\sin(\delta_{0} - \delta_{S})\sin\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) + \cos\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \\ = & \sin\phi_{S}\sin(\Delta m_{s}t) \right] \\ \mathsf{A}_{10} & = & |\mathsf{A}_{S}||\mathsf{A}_{0}|e^{-\Gamma_{S}t} \left[-\sin(\delta_{0} - \delta_{S})\sin\phi_{S}\sinh\left(\frac{\Delta\Gamma_{S}}{2}t\right) \\ = & \sin(\delta_{0} - \delta_{S})\cos\phi_{S}\sin(\Delta m_{s}t) + \cos(\delta_{0} - \delta_{S})\cos(\Delta m_{s}t) \right] \end{aligned}$$

Theory

$\phi_{s} \text{ in } \mathbf{B}^{0}_{s} \rightarrow \mathbf{J}/\psi \pi^{+}\pi^{-}$

- ▶ $B_s^0 \rightarrow J/\psi f_0(980)$ has been used to measure ϕ_s at LHCb before [PLB 707 5 (2012)]
- Pure CP-odd final state means decay rate used to fit for φ_s is relatively straightforward:

$$\Gamma \left(\mathbf{B}_{\mathbf{S}}^{0} \to \mathbf{J}/\psi \, f_{\mathrm{odd}} \right) = \frac{\mathcal{N}}{2} e^{-\Gamma_{\mathbf{S}} t} \left\{ e^{\Delta \Gamma_{\mathbf{S}} t/2} (1 + \cos \phi_{\mathbf{S}}) + e^{-\Delta \Gamma_{\mathbf{S}} t/2} (1 - \cos \phi_{\mathbf{S}}) - \sin \phi_{\mathbf{S}} \sin (\Delta m_{\mathbf{S}} t) \right\}$$

$$\Gamma \left(\overline{\mathbf{B}}_{\mathbf{S}}^{0} \to \mathbf{J}/\psi \, f_{\mathrm{odd}} \right) = \frac{\mathcal{N}}{2} e^{-\Gamma_{\mathbf{S}} t} \left\{ e^{\Delta \Gamma_{\mathbf{S}} t/2} (1 + \cos \phi_{\mathbf{S}}) + e^{-\Delta \Gamma_{\mathbf{S}} t/2} (1 - \cos \phi_{\mathbf{S}}) + \sin \phi_{\mathbf{S}} \sin (\Delta m_{\mathbf{S}} t) \right\}$$