Гравитационные состояния ультрахолодных квантовых систем

Institut Laue-Langevin, Grenoble

LPSC, Grenoble

JINR, Dubna

CERN, Geneva

PNPI, Gatchina

University of Virginia

FIAN, Moscow

А.Ю. Воронин ФИАН

ПЛАН

- Квантовые состояния ультрахолодных нейтронов в гравитационном поле Землиспектрометр ГРАНИТ
- Поиск «нестандартной физики»: ограничения на характеристики аксионного поля из гравитационных экспериментов с УХН
- Гравитационные состояния Антиводорода и измерение гравитационной массы

Гравитационные состояния УХН

$$\varepsilon_n = \lambda_n \varepsilon$$
 $\varepsilon = \sqrt[3]{\frac{\hbar^2 M g^2}{2}} = 0.61 \ 10^{-12} \text{eV} \ l_0 = \sqrt[3]{\frac{\hbar^2}{2M^2 g}} = 5.87 \ 10^{-6} m$

Gravitational Bound states – The experiment Nesvizhevsky V.V. et. al. Nature 415, 297 (2002)

- Count rates at ILL turbine: $\sim 1/s$ to 1/h
- Effective (vertical) temperature of neutrons is ~20 nK
- Background suppression is a factor of $\sim 10^8$ - 10^9
- Parallelism of the bottom mirror and the absorber/scatterer is $\sim 10^{-6}$

$$\begin{array}{lll} z_1^{\rm exp} &=& 12.2 \pm 1.8_{\rm sys} \pm 0.7_{\rm stat} \ \mu {\rm m} \\ z_1^{\rm q.c.} &=& \frac{3}{2} \langle 1|z|1\rangle = 13.7 \ \mu {\rm m} \\ z_2^{\rm exp} &=& 21.6 \pm 2.2_{\rm sys} \pm 0.7_{\rm stat} \ \mu {\rm m} \\ z_2^{\rm q.c.} &=& \frac{3}{2} \langle 2|z|2\rangle = 24 \ \mu {\rm m} \end{array}$$

Results with the Position-Sensitive Detector

AXION and UCN gravitational states

- Strong CP-problem- explanation of extremely small electric dipole moment of neutron
- Pseudo-scalar neutral light bozon

 $10^{-6} < M_a < 10^{-3} eV$; $1.3 \ 10^{-4} < \lambda < 1.3 \ 10^{-1} m$

 Axion coupling with electron, photons and nucleon

Short-range spin-dependent forces

Effect on Gravitationally Bound States

Integration of 2nd potential over mirror:

$$V(z) = -g_{s}^{N}g_{P}^{n}\frac{\hbar\rho_{m}\lambda}{8m_{n}^{2}c}\exp\left(-z/\lambda\right)\left(\underbrace{\sigma_{n}\cdot\hat{z}}_{+1}\right)$$

Inclusion of absorber:

$$W(z) = \pm g_s^N g_P^n \frac{\hbar \rho_m \lambda}{8m_n^2 c} \underbrace{\left[\exp\left(-\frac{z}{\lambda}\right) - \exp\left(-\frac{(\Delta h - z)}{\lambda}\right) \right]}_{\frac{2z}{\lambda} + \text{const.}}$$

After dropping the invisible constant piece,

W(z) is linear in z

$$g \rightarrow g_{\text{eff}} = g \pm g_s^N g_P^n \frac{2\hbar\rho_{\text{m}}}{8m_{\text{n}}^3 c}$$

Our limits are calculated from a shift of the turning point by 3 μ m.

$$z_1 = 2.34 \sqrt[3]{\frac{\hbar^2}{2m^2g}} = 13.7 \ \mu \text{m}$$
$$z_2 = 4.09 \sqrt[3]{\frac{\hbar^2}{2m^2g}} = 24.0 \ \mu \text{m}$$

Exclusion plot

GRANIT spectrometer

1. Population of ground state 3. Study transition to "final state" 2. Populate the initial state 4. Neutron Detection 30-50 cm Probability of $\delta E_{\rm min} \approx 10^{-18} eV$ transition If lifetime is $\tau_n \sim 500$ s, $\frac{\Delta E}{E} \sim \frac{\hbar}{\tau_n E} = 2 \cdot 10^{-6}$ $E_i - E_j = \hbar \cdot w_{ij}$ $V_{21} \approx 256 Hz$ $\frac{\delta E_{\min}}{\sim} \approx 10^{-6}$ $E_{2} - E_{1}$ Flatness of bottom mirror: < 100 nm Perturbation Accuracy of setting the side walls perpendicular: $\sim 10^{-5}$ frequency, Hz Vibrations, Count Rate, Holes, ...

GRANIT spectrometer

Гравитационные состояния Антиводорода

m = M?

ALPHA collaboration Nature Physics (April, 2011)

309 атомов антиводорода удержаны в течении 1000 с

Глубина ямы для атомов 0.54 К

Gbar : $\overline{\mathbf{g}}$ experiment using $\overline{\mathbf{H}}^+$ to get $\overline{\mathbf{H}}$ atoms

Relative Precision on g:			desirable range			
$\overline{\mathrm{H}}^{+}$ in ion trap	∆g/g	vertical height	1 km 1 1	1=m		1 mm
5 10 ⁵	0.001	temperature	1K	-11	mK	1 µК
10 ⁴	0.006					
10 ³	0.02	vertical velocity	100 m/s	10 m/s	1 m/s	0.1 m/s
27/04/2011	Pascal Debu - CEA	A/DSM/IRFU cryogenic t (4.1	emperature 2 K)	Lyman	recoil limi Doppler li ι–α laser (it imit cooling

GBar Project CERN approved may2012

гравитационные свойства антиводорода

Прямой тест Принципа Эквивалентности с

антивеществом при T~1 nK

2013

2015

ФИАН

Квантовое отражение ультрахолодных антиатомов Спектроскопия долгоживущих гравитационных состояний

$\overline{H} + WALL$

ANNIHILATION ?

A. Yu. Voronin, P. Froelich, and B. Zygelman, Phys. Rev. A 72, 062903 (2005).

J. E. Lennard-Jones, Trans. Faraday Soc. 28, 333 1932.

Quantum reflection=

Reflection from the fast changing attractive potential

 $\frac{d\lambda_B(z)}{dz} \ge 1; \ \lambda_B(z) = \frac{2\pi h}{\sqrt{2m(E - V(z))}}$ $\frac{d\lambda_B(z)}{dz} = \frac{m\lambda_B^3}{\hbar^2} \frac{dV(z)}{dz}$ $\Psi(z \to \infty) = e^{-ikz} - Se^{ikz}$ $\lim_{k \to 0} S = 1 - 2ika \qquad a = \operatorname{Re} a - i \left| \operatorname{Im} a \right|$ $\lim_{k \to 0} R_{qr} \equiv \left| S \right|^2 = 1 - 4k \left| \operatorname{Im} a \right| \to 1; \ \underline{P}_{ann} = 4k \left| \operatorname{Im} a \right| \to 0$

 $a = -0,0028 - i0,027\mu m$

CASIMIR-POLDER POTENTIAL $P_{amn} = 4k |Im a| \rightarrow 0$

From which height can we drop antihydrogen?

Gravitational states

TABLE I. The eigenvalues, gravitational energies, and classical turning points of a quantum bouncer with the mass of (anti)hydrogen in the Earth's gravitational field.

n	λ_n^0	E_n^0 (peV)	z_n^0 (μ m)
1	2.338	1.407	13.726
2	4.088	2.461	24.001
3	5.521	3.324	32.414
4	6.787	4.086	39.846
5	7.944	4.782	46.639
6	9.023	5.431	52.974
7	10.040	6.044	58.945

Correction by Casimir-Polder potential + annihilation

Lifetime is determined by gravitational force *Mg* and |Im a|. Numbers: $\varepsilon_1 = 1.43 \ peV$; $\varepsilon 2 = 2.49 \ peV$; $\tau \approx 0.1s$

Antihydrogen "clock"

temporal-energy properties of gravitational states

$$\Phi(z,t) = \varphi_1(z) \exp(-i\varepsilon_1 t - \Gamma t/2) + \varphi_2(z) \exp(-i\varepsilon_2 t - \Gamma t/2)$$

$$\varphi_k(z) \sim Ai(z - \lambda_k - a/l_0) \quad \varepsilon_k = \varepsilon_0 \lambda_k \quad \Gamma = 2\varepsilon_0 \left| \operatorname{Im} a \right| / l_0$$

$$\left\langle \varphi_k \left| \varphi_n \right\rangle = 2i \frac{\operatorname{Im} a}{l_0} \frac{1}{\lambda_k - \lambda_n + 2i \operatorname{Im} a/l_0} \neq \delta_{kn} \right\rangle$$

$$N_{ann}(t) = -\frac{\partial}{\partial t} \int_0^\infty \left| \Phi(z,t) \right|^2 dz = 2\Gamma \exp(-\Gamma t) \left[(1 + \cos((\varepsilon_2 - \varepsilon_1)t/\hbar)) \right]$$

A. YU. VORONIN, P. FROELICH, AND V. V. NESVIZHEVSKY PHYSICAL REVIEW A 83, 032903 (2011)

Bouncing Antihydrogen 2 states

FIG. 2. Evolution of the annihilation rate of \overline{H} atoms in a superposition of the first and second gravitational states.

RESONANCE SPECTROSCOPY of Gravitational States

Studied by V.Nesvizhevsky et. al in connection with neutrons E. Kupriyanova MEPHI- magnetic field induced transitions in antihydrogen Induced resonance transitions : $\frac{\partial B}{\partial z} = B_0 \cos(\omega t)$

 $\frac{2m_{\rm H}\hbar\omega_{12}^3}{a^2(\lambda^0-\lambda^0)^3}.$

• Gradient magnetic field

•Oscillating bottom mirror

$$\omega_{21} = 254.54 \text{ Hz } h_1 = 13.7 \,\mu m$$

 $\omega_{31} = 462.83 \text{ Hz } h_2 = 24.0 \,\mu m$
 $\Gamma_{an} \approx 1.6 \text{ Hz} \qquad h_3 = 32.4 \,\mu m$

M =

Quantum ballistic experiment

spatial properties of gravitational states

$$z_{1,2}$$
= (λ_2 - λ_1) l_0 =10.27 µm

$$M = \frac{\hbar^{2} (\lambda_{2} - \lambda_{1})^{3}}{2gm_{H} z_{1,2}^{3}}$$

FIG. 4. (Color) The probability density of \overline{H} in a superposition of the first and second gravitational states, as a function of the height *z* above the mirror (vertical axis) and the time *t* (horizontal axis). Dark shade, low probability density; light shade, high probability density. The dashed line indicates the position of the node in the wave function of the second state.

выводы

- УХН в гравитационном поле-инструмент прецизионных исследований фундаментальных взаимодействий
- Спектроскопия и интерференция гравитационных состояний антиводородаквантовые измерения гравитационной массы антиводорода