

МГУ им.М.В.Ломоносова Физический факультет и МЛЦ



## Генерация релятивистских частиц в пространственно неоднородной плазме под действием лазерных импульсов Савельев Андре **BOO** COBV

Шестые Черенковские чтения «Новые методы в экспериментальной ядерной физике и физике частиц», Москва, ФИАН, 9 апреля 2013 г.

- К.А.Иванов, С.А.Шуляпов, Р.В.Волков
  физический факультет и Международный лазерный центр МГУ
- А.В.Брантов, В.Ю.Быченков Физический институт РАН
- В.Г.Недорезов, А.М.Лапик, А.В.Русаков,
  Р.М.Джилкибаев, А.А.Туринге

Институт ядерных исследований РАН

## Outline

- Relativistic laser-plasma interaction: basics, problems and future outcomes
- Pre-plasma impact onto fast electron generation at high intensities

## Relativistic optical field

Quiver electron velocity (classical):

 $m_e \ddot{x} = qEe^{i\omega t}$ 

Relativistic "threshold"

$$v_{osc} = \frac{qE}{m_e \omega} \approx c$$

 $\varepsilon_{osc} \approx 0.5 \text{ MeV}$ 

$$\varepsilon_{osc} = \frac{q^2 E^2}{2 m_e \omega^2} = \frac{q^2 I \lambda^2}{\pi m_e c^3}$$

$$Q = I\lambda^2$$
$$Q_R \approx 1.4 \cdot 10^{18} \text{ W/cm}^2 \mu \text{ m}^2$$

## **Electron motion**



### Пороговые значения интенсивности



# Образование плазмы и формирование быстрого электронного компонента



Свойства ФЛП:

- Малое время жизни: 1 пс 10 нс
- Высокая скорость разлёта: 10<sup>3</sup> 10<sup>6</sup> м/с
- Малый размер: 1 мкм 1 мм
- Не Максвелловское распределение
  - электронов по скоростям

# Образование плазмы и формирование быстрого электронного компонента



### Процессы в плазме

#### Интенсивности излучения:



#### Механизмы генерации "горячих" электронов. Область релятивистских интенсивностей.

10



# Влияние контраста лазерного излучения на генерацию быстрых электронов в плазме





## Ti:Sapphire Laser МЛЦ МГУ

- Energy per pulse 1-50 mJ
- Energy stability 3% rms within 1 hour
- Pulse duration >35 fs
- Central wavelength 805 nm
- Spectral bandwidth 23 nm
- Repetition rate 10 Hz
- M<sup>2</sup> =1.7
- Nanosecond contrast 4x10<sup>7</sup>
- Picosecond contrast better than 10<sup>6</sup>

Методика измерения спектра и оценки параметров плазмы

1. Коллимация потока рентгеновских квантов



2. Моделирование поглощения квантов в веществе сцинтиллятора



Методика измерения спектра и оценки параметров плазмы

#### 1. Коллимация потока рентгеновских квантов



#### 2. Моделирование поглощения квантов в веществе сцинтиллятора



## PIC & GEANT

- пятно размером 4 мкм
- плотность которой составляла 4 критических
- облако неплотной плазмы с экспоненциально спадающим градиентом плотности от поверхности мишени к вакууму длиной 4 мкм
- длительность импульса составляла 50 фс, а пиковая интенсивность 2x10<sup>18</sup> Вт/см<sup>2</sup>.



#### Схема экспериментальной установки

#### Параметры лазерного импульса (Ti:Sapphire):

 $\tau$ = 45±5 фс, 350±50 фс;  $\lambda$  = 800 нм;  $\nu$  = 10 Гц; Е = 1-10 мДж;

 $I_{max} = 10^{17} - 2x10^{18} Bm/cm^2$ 



1- лазерное излучение, 2 — вакуумная камера (P<sub>ocm</sub>=10<sup>-2</sup>mopp), 3 внеосевая парабола, 4 — мишень, 5 и 6 — ФЭУ с сцинтиллятором Nal, 7 — коллиматор, 8 - фольги

#### Форма лазерного импульса



|                              |                     | Тип «1»            | Тип «2»            | Тип «3»            |
|------------------------------|---------------------|--------------------|--------------------|--------------------|
| Уровень ASE, о.е.            |                     | 10 <sup>-8</sup>   | 10 <sup>-8</sup>   | 10 <sup>-5</sup>   |
| Пикосекундный<br>предымпульс | Амплитуда, о.е.     | 6x10 <sup>-7</sup> | 6x10 <sup>-7</sup> | 5x10 <sup>-3</sup> |
|                              | Время<br>опережения | 12 пс              | 12 пс              | 25 пс              |
| Наносекундный<br>предымпульс | Амплитуда, о.е.     | 5x10 <sup>-8</sup> | 3x10 <sup>-4</sup> | 2x10 <sup>-6</sup> |
|                              | Время<br>опережения | 12.5 нс            | 12.5 нс            | 12.5 нс            |

Тип контраста «1», т=45 фс, мишень – железо



Теор. оценка на энергию электронов: *E<sub>h</sub> = 120 и 300* КэВ

$$E_h = \frac{3}{2}mc^2\left(\sqrt{1+I_{18}\lambda_{\mu}^2/1.37}-1\right)$$
  
(пондеромоторное ускорение)

Тип контраста «2», т=45 фс, мишень – железо



Диссипация энергии в преплазме малой плотности

P.S. E<sub>hot</sub>=270 кэВ для импульса «1» (низкий уровень ASE) при I=2x10<sup>18</sup> Bт/см<sup>2</sup>

**10**<sup>18</sup>



P.S. E<sub>hot</sub>=95 кэВ для импульса «1» (низкий уровень ASE) при I=7x10<sup>17</sup> Bт/см<sup>2</sup>



плазменной волне з в области *n=n<sub>cr</sub>/4 E<sub>hot</sub> ~ (n/n<sub>cr</sub>)xI* 

### Рентгеновская диагностика плазмы, длинный импульс



P.S. E<sub>hot</sub>=270 кэВ для импульса «1» (низкий уровень ASE) при 45 фс

### Рентгеновская диагностика плазмы, длинный импульс



P.S. E<sub>hot</sub>=175 кэВ для импульса «З» (высокий уровень ASE) при 45 фс

### Рентгеновская диагностика плазмы, длинный импульс



Тип контраста «З», мишень – плавленый кварц





Теор. оценка на энергию электронов при I=7x10<sup>17</sup> Вт/см<sup>2</sup>:  $E_h = 250$  КэВ  $E_h = \frac{3}{2} 215 (I_{18} \lambda_{\mu}^2)^{1/3}$ 

(резонансное поглощение)

# Рентгеновская диагностика плазмы, общие результаты





| Тип<br>контраста | Материал<br>мишени | τ= ~45 φc                 |                        | τ= ~350 φc                |                        |
|------------------|--------------------|---------------------------|------------------------|---------------------------|------------------------|
|                  |                    | I, Вт/см²                 | Е <sub>hot</sub> , кэВ | I, Вт/см²                 | Е <sub>hot</sub> , кэВ |
| Тип «1»          | железо             | <b>7x10</b> <sup>17</sup> | 95±15                  | <b>8x10</b> <sup>16</sup> | 35±5                   |
|                  |                    | <b>2x10</b> <sup>18</sup> | 270±30                 | 2.3x10 <sup>17</sup>      | 45±5                   |
| Тип «2»          | железо             | <b>2x10</b> <sup>18</sup> | 200±10                 | 2.3x10 <sup>17</sup>      | 50±5                   |
| Тип «3»          | железо             | 7x10 <sup>17</sup>        | 175±15                 | <b>8x10</b> <sup>16</sup> | 380±30                 |
|                  | свинец             | <b>10</b> <sup>18</sup>   | 560±180                | 1.2x10 <sup>17</sup>      | 870±80                 |
|                  | плавл.кварц        | 7x10 <sup>17</sup>        | 300±30                 | <b>8x10</b> <sup>16</sup> | 60±10                  |

Contr. Plasma Phys. 53, 116 (2013)

#### Теневое фотографирование плазмы

#### Греющий импульс:

длительность: **50 фс**; длина волны: **800 нм**; энергия импульса: **150 мкДж** 

#### Сканирующий импульс: длина волны: **400 нм**; задержка относительно греющего импульса: **0 – 15 нс**.



1 — делительная пластина, 2 — КВГ, 3 — мишень, 4 — объектив, 5 — ПЗС-камера

#### Формирование облака преплазмы



WLMI-2012, Porquerolles, France

## **2D PIC modeling with Mandor code**

#### Laser pulse

- Pulse duration 50 and 300 fs
- Plasma focal spot- 4 mcm
- Intensity I =  $10^{18}$  W/cm<sup>2</sup>



## **2D PIC modeling with Mandor code**

#### Laser pulse

- Pulse duration 50
- Plasma focal spot-4 mcm
- Intensity I =  $10^{18}$  W/cm<sup>2</sup>



## **2D PIC modeling with Mandor code**

#### Laser pulse

- Pulse duration 50 and 300 fs
- Plasma focal spot- 4 mcm
- Intensity I =  $10^{18}$  W/cm<sup>2</sup>





## Планы и перспективы

- Увеличение интенсивности до 10<sup>19</sup> Вт/см<sup>2</sup> и выше
- Увеличение контраста до 10<sup>10</sup> и лучше
- Использование специального наносекундного импульса для создания преплазмы
- Исследование лазерно-индуцированных ядерных процессов (γ,n), (d(p),n)

## СПАСИБО ЗА ВНИМАНИЕ