

МГУ им.М.В.Ломоносова Физический факультет и МЛЦ

Генерация релятивистских частиц в пространственно неоднородной плазме под действием лазерных импульсов

Шестые Черенковские чтения «Новые методы в экспериментальной ядерной физике и физике частиц», Москва, ФИАН, 9 апреля 2013 г.

Савельев Андре

- К.А.Иванов, С.А.Шуляпов, Р.В.Волков
 физический факультет и Международный лазерный центр МГУ
- А.В.Брантов, В.Ю.Быченков Физический институт РАН
- В.Г.Недорезов, А.М.Лапик, А.В.Русаков, Р.М.Джилкибаев, А.А.Туринге

Институт ядерных исследований РАН

Outline

- Relativistic laser-plasma interaction: basics, problems and future outcomes
- Pre-plasma impact onto fast electron generation at high intensities

Relativistic optical field

Quiver electron velocity (classical):

$$m_e \ddot{x} = qEe^{i\omega t}$$

 $v_{osc} = \frac{qE}{m_e \omega} \approx c$

Relativistic "threshold"

 $\varepsilon_{osc} \approx 0.5 \text{ MeV}$

$$\varepsilon_{osc} = \frac{q^2 E^2}{2m_e \omega^2} = \frac{q^2 I \lambda^2}{\pi m_e c^3}$$

$$Q = I\lambda^2$$

$$Q_R \approx 1.4 \cdot 10^{18} \text{ W/cm}^2 \mu \text{ m}^2$$

Electron motion

Пороговые значения интенсивности

Образование плазмы и формирование быстрого электронного компонента

Свойства ФЛП:

- Малое время жизни: 1 пс 10 нс
- Высокая скорость разлёта: 10³ 10⁶ м/с
- Малый размер: 1 мкм 1 мм
- Не Максвелловское распределение электронов по скоростям

Образование плазмы и формирование быстрого электронного компонента

Свойства ФЛП:

- Малое время жизни: 1 пс – 10 нс

- Высокая скорость разлёта: 10³ – 10⁶ м/с

- Малый размер: 1 мкм – 1 мм

- Не Максвелловское распределение электронов по скоростям **Тепловой электронный компонент** *(столкновение с ионами плазмы)*

Быстрые (горячие) электроны *(ускорение лазерным полем)*

$$E_h = 1$$
 кэВ — 1 ГэВ

Процессы в плазме

Интенсивности излучения:

$$I \sim 10^{15} - 10^{17} \frac{\mathrm{Br}}{\mathrm{cm}^2}$$
 \longrightarrow $I \sim 10^{17} - 10^{18} \frac{\mathrm{Br}}{\mathrm{cm}^2}$ \longrightarrow $I > 10^{18} \frac{\mathrm{Br}}{\mathrm{cm}^2}$ \longrightarrow $I > 10^{18} \frac{\mathrm{Br}}{\mathrm{cm}^2}$

Горячие электроны

- hoАномальный скин-эффект ($L_a/\lambda \ll 1$)
- \triangleright Вакуумный нагрев $(L_a/\lambda < 0.1)$
- \triangleright Резонансное поглощение $(L_a/\lambda \ge 0.1)$

Быстрые ионы

Ускорение амбиполярным полем

Рентгеновское излучение

- Тормозное излучение
- Рекомбинационное излучение
- Характеристическое излучение

$$L_a = n_e \left(\frac{\partial n_e}{\partial x}\right)^{-1} = \left(\frac{\partial \ln n_e}{\partial x}\right)^{-1}$$

$$I < 10^{14} \frac{\text{BT}}{\text{cm}^2}$$

Обратно-тормозное поглощение $T_h \sim 10 \ \kappa э B$ -> тепловая компонента

Механизмы генерации "горячих" электронов. Область релятивистских интенсивностей.

$$N_{cr} = \frac{m_e \,\omega_0^2}{4 \,\pi \,e^2}$$

$$Q = \frac{I}{I_{\text{pen}}}$$

$$\overline{F}_{\pi} = -|e|\overline{E} - \frac{|e|}{c}[\overline{v} \times \overline{B}]$$

<u>Резонансное</u> поглощение

<u>Пондеромоторное</u> <u>ускорение</u>

$[\mathbf{j} imes \mathbf{B}]$ нагрев

<u>Ускорение в</u> кильватерной волне

<u>Стохастический</u> нагрев

 $rac{L_a}{\lambda}\gg 1$ $N_e < N_{cr}$ $Q_{1,2}$ >1 Длинный импульс

Гамма-излучение:

Тормозное излучение

Быстрые ионы:

Ускорение Амбиполярным полем

Влияние контраста лазерного излучения на генерацию быстрых электронов в плазме

«Высокий» контраст

«Низкий» контраст

Ti:Sapphire Laser МЛЦ МГУ

- Energy per pulse 1-50 mJ
- Energy stability 3% rms within 1 hour
- Pulse duration >35 fs
- Central wavelength 805 nm
- Spectral bandwidth 23 nm
- Repetition rate 10 Hz
- $M^2 = 1.7$
- Nanosecond contrast 4x10⁷
- Picosecond contrast better than 10⁶

Методика измерения спектра и оценки параметров плазмы

1. Коллимация потока рентгеновских квантов

2. Моделирование поглощения квантов в веществе сцинтиллятора

Методика измерения спектра и оценки параметров плазмы

1. Коллимация потока рентгеновских квантов

2. Моделирование поглощения квантов в веществе сцинтиллятора

PIC & GEANT

- пятно размером 4 мкм
- плотность которой составляла 4 критических
- облако неплотной плазмы с экспоненциально спадающим градиентом плотности от поверхности мишени к вакууму длиной 4 мкм
- длительность импульса составляла 50 фс, а пиковая интенсивность 2x10¹⁸ Bт/cm².

Схема экспериментальной установки

Параметры лазерного импульса (Ti:Sapphire):

au= 45±5 фс, 350±50 фс; λ = 800 нм; ν = 10 Гц; E = 1-10 мДж; I_{max} = 10^{17} - $2x10^{18}$ Bm/cм²

1- лазерное излучение, 2 — вакуумная камера (P_{ocm}=10⁻²mopp), 3 — внеосевая парабола, 4 — мишень, 5 и 6 — ФЭУ с сцинтиллятором Nal, 7 — коллиматор, 8 - фольги

Тип «3»

Форма лазерного импульса

Тип «2»

Уровень ASE, о.е.		10-8	10-8	10 ⁻⁵
Пикосекундный предымпульс	Амплитуда, о.е.	6x10 ⁻⁷	6x10 ⁻⁷	5x10 ⁻³
	Время опережения	12 пс	12 пс	25 пс
Наносекундный предымпульс	Амплитуда, о.е.	5x10 ⁻⁸	3x10 ⁻⁴	2x10 ⁻⁶
	Время опережения	12.5 нс	12.5 нс	12.5 нс

Тип «1»

Тип контраста «1», τ=45 фс, мишень – железо

Теор. оценка на энергию электронов: $E_h = 120 \ u \ 300 \ K extbf{s} B$

$$E_h = {}^3/_2\,mc^2\left(\sqrt{1+I_{18}\lambda_\mu^2/1.37}-1
ight)$$
 (пондеромоторное ускорение)

Тип контраста «2», τ=45 фс, мишень – железо

Диссипация энергии в преплазме малой плотности

P.S. E_{hot} =270 кэВ для импульса «1» (низкий уровень ASE) при $I=2x10^{18}$ Bт/см²

Тип контраста «3», τ=45 фс, мишень – железо, свинец

P.S. E_{hot} =95 кэВ для импульса «1» (низкий уровень ASE) при $I=7x10^{17}~BT/cm^2$

Тип контраста «3», τ=45 фс, мишень – железо, свинец

Ускорение электронов в плазменной волне за счёт ВКР в области $n=n_{cr}/4$ $E_{hot} \sim (n/n_{cr})xI$

Рентгеновская диагностика плазмы, длинный импульс

P.S. E_{hot}=270 кэВ для импульса «1» (низкий уровень ASE) при 45 фс

Рентгеновская диагностика плазмы, длинный импульс

P.S. E_{hot} =175 кэВ для импульса «3» (высокий уровень ASE) при 45 фс

Рентгеновская диагностика плазмы, длинный импульс

При ускорении в плазменной волне: $E_{hot} \sim (n/n_{cr})xI$

Появление нового быстрого электронного компонента в области субкритической плотности

Тип контраста «3», мишень – плавленый кварц

Теор. оценка на энергию электронов при $I=7x10^{17}$ BT/см²: $E_h=250$ KэВ

$$E_h = \frac{3}{2} 215 \left(I_{18} \lambda_{\mu}^2\right)^{1/3}$$

(резонансное поглощение)

Рентгеновская диагностика плазмы, общие результаты

Тип контраста	Материал мишени	τ= ~45 φc		τ= ~350 φc	
		I, Вт/см ²	E _{hot} , кэВ	I, Вт/см ²	E _{hot} , кэВ
Тип «1»	железо	7x10 ¹⁷	95±15	8x10 ¹⁶	35±5
		2x10 ¹⁸	270±30	2.3x10 ¹⁷	45±5
Тип «2»	железо	2x10 ¹⁸	200±10	2.3x10 ¹⁷	50±5
Тип «3»	железо	7x10 ¹⁷	175±15	8x10 ¹⁶	380±30
	свинец	10 ¹⁸	560±180	1.2x10 ¹⁷	870±80
	плавл.кварц	7x10 ¹⁷	300±30	8x10 ¹⁶	60±10

Contr. Plasma Phys. 53, 116 (2013)

Теневое фотографирование плазмы

Греющий импульс:

длительность: **50 фс**;

длина волны: **800 нм**;

энергия импульса: **150 мкДж**

Сканирующий импульс:

длина волны: **400 нм**;

задержка относительно

греющего импульса: 0 - 15 нс.

1 — делительная пластина, 2 — КВГ, 3 — мишень, 4 — объектив, 5 — ПЗС-камера

Формирование облака преплазмы

WLMI-2012, Porquerolles, France

2D PIC modeling with Mandor code

Laser pulse

- Pulse duration 50 and 300 fs
- Plasma focal spot—4 mcm

2D PIC modeling with Mandor code

Laser pulse

- Pulse duration 50
- Plasma focal spot
 – 4 mcm
- Intensity I = 10^{18} W/cm²

2D PIC modeling with Mandor code

Laser pulse

- Pulse duration 50 and 300 fs
- Plasma focal spot— 4 mcm
- Intensity I = 10^{18} W/cm²

Планы и перспективы

- Увеличение интенсивности до 10¹⁹ Вт/см² и выше
- Увеличение контраста до 10¹⁰ и лучше
- Использование специального наносекундного импульса для создания преплазмы
- Исследование лазерно-индуцированных ядерных процессов (γ,n), (d(p),n)

СПАСИБО ЗА ВНИМАНИЕ