О возможности прецизионного измерения упругого рассеяния на ускорителе ИФВЭ

С.П.Денисов, 15 апреля 2014 года.

Нужно ли это? Возможно ли это?

Изучение упругого рассеяния частиц со времён Резерфорда является классическим экспериментом, который проводился одним из первых на всех ускорителях и коллайдерах, включая Тэватрон и LHC. Эти эксперименты сыграли исключительно важную роль в понимании структуры материи – сначала атома, потом ядер, протонов и других частиц. Полученные в них результаты привели к кардинальным изменениям и заложили фундамент современного понимания физики микромира. Необходимо отметить, что теоретический прогресс в понимании процессов упругого рассеяния при высоких энергиях ограничивается пока в основном построением различных феноменологических моделей. Это связано с тем, что пространственно-временные масштабы, определяющие дифракционное рассеяние адронов, не являются малыми и методы современной теории сильных взаимодействий квантовой хромодинамики - в этой области развиты очены слабо. Именно это обстоятельство делает столь насущной «подпитку» теории новыми данными.

dσ/dt, mb/(GeV/c)²

Рис.1. Дифференциальное сечение упругого рассеяния протонов и антипротонов на протонах при импульсе 50 ГэВ/с.

http://hermes.ihep.su:8001/compas/kuyanov/elasticCollisions.html

Как известно, простая экспоненциальная зависимость дифференциальных сечений в области дифракционного конуса следует из предположения о гладкой гауссовой форме эффективного рассеивателя в поперечной плоскости. Вряд ли в реальности дело обстоит так просто, и скорее всего структура дифракционного конуса является более сложной.

Отличие поведения сечения упругого рассеяния в области дифракционного пика от гладкой зависимости может быть связано как с более сложной, чем принято считать, пространственной структурой периферии области взаимодействия (расстояния порядка 1-2 фм), так и с возможными неоднородностями, порождаемыми образованием квазинезависимых «составляющих кварков», имеющих свои структуру и размер (0.2–0.4 фм). Наибольший интерес представляет именно первая возможность, поскольку эти структуры или осцилляции могли бы быть интерпретированы как проявление интерференции между кулоновыми и Ван-дер-Ваальсовыми силами. Имеются определённые основания полагать, что достаточно скрупулёзный анализ позволит обнаружить осцилляции в области дифракционного пика при самых различных энергиях. Обнаружение дальнодействущих динамических сил типа Ван-дер-Ваальса, либо их «закрытие» в равной степени ценны для прояснения механизма конфайнмента во взаимодействии адронов.

Но есть ли надёжные экспериментальные указания на наличие каких-либо особенностей в дифракционном конусе упругого рассеяния?

Рис.2. Дифференциальные сечения упругого рассеяния, фитированные квадратичной экспонентой и разность между измеренными сечениями при импульсе 60 ГэВ/с и их фитом как функция t. Число упругих событий при импульсе 60 ГэВ/с – 103853, при 65 ГэВ/с – 15865 и при 50 ГэВ/с – 12910.

Есть ли другие экспериментальные указания на существование структуры в дифракционном конусе?

- Похожие осцилляции сечения упругого рассеяния наблюдались в экспериментах по упругому pp-рассеянию на встречных кольцах ISR в ЦЕРН (информация Уго Амальди).
- 2. О.В.Селюгин и Дж.Р.Куделл провели анализ большой совокупности данных по упругому рассеянию и показали, что они не противоречат существованию осцилляций при малых значениях –t.

Как следует из рис.2, для наблюдения структуры в дифракционном конусе необходимы:

- 1. Высокая статистика.
- 2. Хорошее разрешение по переданному импульсу.

До настоящего времени в области энергий ускорителя ИФВЭ не было проведено ни одного эксперимента, удовлетворяющего обоим этим требованиям. Мы предлагаем провести на ускорителе ИФВЭ эксперимент по прецизионному изучению упругого pp-рассеяния при энергии 50 ГэВ на статистике 10⁹ событий при высоком (несколько процентов) разрешении по переданному импульсу с целью проверки результатов эксперимента, в которых наблюдались осцилляционные структуры в области дифракционного конуса.

Рис.3. Схема установки. S1-S4 – сцинтилляционные счётчики, SA – счётчик антисовпадений, PC1-PC3 – пропорциональные камеры, D1, D2 – дифференциальные черенковские счётчики, DT1-DT5 – станции из дрейфовых трубок, T – водородная мишень, TOF – сцинтилляционные счётчики для измерения времени пролёта протона отдачи, M – спектрометрический магнит.

Рис.4. Фотография майларовой дрейфовой трубки.

Рис.5. Фотография дрейфовой камеры из майларовых трубок.

С.П.Денисов. 15 апреля 2014 г.

Рис.6. Схема испытания счётчиков: S1-S3 – пучковые счётчики, T1-T4 – ф.э.у. исследуемых сцинтилляционных счётчиков.

Рис.7. Зависимости временного разрешения сигналов с ф.э.у. XP2020 от места прохождения частицы в 2 м сцинтилляционном счетчике.

Рис.8. Зависимости временного разрешения одного и двух 2 м счетчиков с ф.э.у. ХР2020 от места прохождения частицы.

Какое разрешение по *t* ? Какова статистика?

a

σ(t)/t

0.12

0.10

0.08

0.06

0.04

0.02

0

b

σ(t)/t

Рис.9. Погрешности в определении -t по углу рассеяния протона с импульсом 50 ГэВ/с (а) и времени пролёта протона отдачи (b). Предполагалось, что разрешение по углу и времени составляют 0.3 мрад и 100 пс.

В действительности, так как плотность ионизационных потерь нерелятивистской частицы dE/dx~1/T₀, то амплитуда А сигнала с ф.э.у. ТОГ будет расти с уменьшением Т_о и временное разрешение будет улучшаться пропорционально А^{-1/2}. Кроме того, следует упомянуть, что распределение ионизационных потерь нерелятивистских частиц следует закону Гаусса, а не Ландау. Разрешение по –t с учётом указанных выше эффектов представлено в таблице.

t, (GeV/c) ²	σ (t), (GeV/c) ²	
0.1	0.00096	
0.2	0.0035	
0.5	0.018	
1.0	0.062	
2.0	0.19	

Амплитудные спектры сигналов с ФЭУ Hamamatsu R1828-01, просматривающих с двух сторон сцинтиллятор Bicron 404 размером 400×60×12.5 мм³. Данные получены при помощи цифрового осциллографа Tektronix 3032B.

Зависимость амплитуды сигналов с ФЭУ от энергии регистрируемого протона

Распределение разности времён прихода сигналов (на полувысоте) с двух ФЭУ.

Зависимость временного разрешения ФЭУ от энергии протона

a, (GeV/c) ²	b, (GeV/c) ²	σ (a, b) , mb	N
0.001	0.01	0.96	1.83·10 ⁸
0.01	0.1	4.03	7.66 ⋅10 ⁸
0. 1	1.0	2.62	4.98·10 ⁸
1.0	2.0	9.89 ·10 ⁻⁴	1.88 ⋅10 ⁵
2.0	3.0	8.79 ⋅10 ⁻⁵	1.67 ·10 ⁴
3.0	4.0	9.75 ·10 ⁻⁶	1852
4.0	5.0	9.89·10 ⁻⁷	188
5.0	6.0	1.28·10 ⁻⁷	25

Число событий упругого pp-рассеяния при энергии 50 ГэВ в различных интервалах по переданному импульсу за один сеанс (20 дней) работы У-70 при полезной длине мишени 1.5 м и давлении водорода 20 атм с учётом эффективности регистрации событий.

Возможное развитие программы

- 1. Изучение упругого *pp*-рассеяния в области дифракционного конуса при других энергиях.
- 2. Изучение упругого *п*р- и Кр-рассеяния.
- 3. Прецизионное изучение упругого рассеяния в области кулон-ядерной интерференции.
- 4. Исследование упругого рассеяния в области переданных импульсов –*t* до 10 (ГэВ/с)².
- 5. Исследование упругого рассеяния протонов и ядер на ядрах с использованием газовых мишеней низкого давления.
- 6. Изучение дифракционных процессов.