

"Байкальский нейтринный

эксперимент".

Восьмые Черенковские чтения, Москва, 14 апреля 2015

Айнутдинов В.М., ИЯИ РАН

7 institutes 52 scientists

IIrkutsk

St-Petersburg Marin Tech. U

INR

MSU

JINR EvoLogics GmbH Germany N-Novgorod Tech. U

baikalweb.jinr.ru

Author list (2014): 52 Researchers

A.D. Avrorin¹, A.V. Avrorin¹, V.M. Aynutdinov¹, R. Bannash⁷, I.A. Belolaptikov², D.Yu. Bogorodsky³, V.B. Brudanin², N.M. Budnev³, I.A. Danilchenko¹,
G.V. Domogatsky¹, A.A. Doroshenko¹, A.N. Dyachok³, Zh.-A.M. Dzhilkibaev^{1a},
S.V. Fialkovsky⁵, A.R. Gafarov³, O.N. Gaponenko¹, K.V. Golubkov¹, T.I. Gress³,
Z. Honz², K.G. Kebkal⁷, O.G. Kebkal⁷, K.V. Konischev², E.N. Konstantinov³,
A.V. Korobchenko³, A.P. Koshechkin¹, F.K. Koshel¹, A.V. Kozhin⁴, V.F. Kulepov⁵,
D.A. Kuleshov¹, V.I. Ljashuk¹, M.B. Milenin⁵, R.A. Mirgazov³, E.R. Osipova⁴,
A.I. Panfilov¹, L.V. Pan'kov³, A.A. Perevalov³, E.N. Pliskovsky², M.I. Rozanov⁶,
V.Yu. Rubtzov³, E.V. Rjabov³, B.A. Shaybonov², A.A. Sheifler¹, M.D. Shelepov¹,
A.V. Skurihin⁴, A.A. Smagina², O.V. Suvorova¹, V.A. Tabolenko³, B.A. Tarashansky³,

¹Institute for Nuclear Research, Moscow, Russia
²Joint Institute for Nuclear Research, Dubna, Russia
³Irkutsk State University, Irkutsk, Russia
⁴Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
⁵Nizhni Novgorod State Technical University, Nizhni Novgorod, Russia
⁶St. Petersburg State Marine University, St. Petersburg, Russia
⁷EvoLogics GmbH, Berlin, Germany

Нейтринные телескопы

Средиземное море Antares, (Nemo, Nestor) → KM3Ne Оз. Байкал NT200/200+ → Baikal_GVD Антарктида AMANDA → IceCube

km

10002000

GMT Dec 29 09 X8 X8 2000 ONC - MAW

Проект глубоководного нейтринного телескопа BAIKAL-GVD (HT1000)

Приоритетные направления исследований:

- Поиск локальных источников нейтрино Галактической и внегалактической природы при энергиях выше 1 ТэВ
- Исследование диффузного потока энергетического спектра, локальной и глобальной анизотропии, состава по типам нейтрино.
- Источники переменной светимости гамма-всплески и др.
- Поиск проявления массивных частиц темной материи.

системы

- Экзотика: магнитные монополи, Q-balls, nuclearites, и др.

Галактические / Внегалактические объекты

Методика регистрации

Нейтринные телескопы представляют собой пространственно-распределённую структуру фотодетекторов.

Получаемая информация – отклик фотодетекторов на черенковское излучение.

The BAIKAL Site

Lake Baikal, Siberia

1370 m maximum depth.

- Distance to shore ~4 km
- No high luminosity bursts from biology.
- No K⁴⁰ background.
- Deployment simplicity: ice is a natural deployment

Baikal water properties: Abs.Length: 22 ± 2 m Scatt.Length: 30-50 m

Sky coverage

Структурные элементы GVD

Gigaton Volume Detector (Baikal-GVD)

GVD Performance

Effective volume for cascades

Cascades directional resolution is 3.5° – 4.5°

Effective area for muons muons (>5 OM/>2 Str)

Muons directional resolution is 0.25°

Оптический модуль

R7081-100 Hamamatsu

D=10 inch. SBA photocathode QE \approx 35% @ 400nm; Gain \sim 10⁷, dark count \sim 8 kHz Angular sensitivity

Glass pressure-resistant sphere VETROVEX (17")

Электроника оптического модуля

HV converter: SHV 12-2.0 K 1000 P
0 ...+ 2000 VDC, stability 0.05%
ripple and noise 8 mVpk-pk
Passive divider: 18 MΩ
2-channel amplifier: Output channel and
PMT noise monitoring channel.
2 LEDs L7113: 470 nm, 5-7 ns

regulation of intensities in the range 1...~10⁸ photons (100m Baikal water)
LED pulse delay regulation: 0 ... 1000 ns

Functional scheme of the optical module electronics

Slow control board: SiLabs C8051F121
Control of electronics operation and monitoring
of PMT parameters via RS485 interface.
Power consumption – max 0.3A×12V

Измерительный канал

Секция

Section (basic DAQ cell) – 12 OM and Section electronics module (SeM).

Cluster Center

Центр кластера

Модуль связи:

Сбор данных с 8 гирлянд

Преобразование линий данных DSL в Ethernet (100BASE-TX)

Кластер

Кластер - полнофункциональная регистрирующая система, работающая как автономно, так и в составе полномасштабного детектора

Engineering arrays (2012-2014)

2012

3 strings, first full-scale GVD string (24 OMs) Data taking from April 2012 – Feb. 2013.

DAQ

Оптические модули

2013

3 full-scale strings (72 OMs), update of section electronics Data taking April 2013 – Feb.2014

2014

5 strings (112 OMs) Data taking since April 2014 - now

 $\sim 2 \times 10^{6} \, \mathrm{m}^{3}$

Первый кластер GVD – Апрель 2015

- 192 OMs at 8 Strings
 2 Sections per String
 12 OMs per Section
- DAQ-Center
- Optical cable to Shore
- Acoustic Positioning System
- Active depth 950 1300 m

Фоновые условия регистрации

1. Significant count rate variations depending the season (chemiluminescence).

- 2. Strong correlation between peak of activity.
- 3. Average count rate ~20-25 kHz (0.3 p.e.)

Временная калибровка каналов

Измерение временной задержки между двумя каналами

15 м- расстояние между ОМ $dT_0 = 64.9 \text{ ns}$ ожидаемая временная разница прихода сигнала

Восстановление положения лазерного источника

-Five fixed intensities: Reconstruct $\sim 10^{12} - 6 \times 10^{13} \gamma / pulse$ of (~10 PeV - 600 PeV shower energy)

Reconstruction accuracy (median value) of laser position ~3 m

Регистрация мюонов

Триггер:

совпадение двух соседних ОМ с низким и высоким порогами, работа секций синхронизована общим триггером Программный отбор – Q > 2 ф.э.

Калибровка каналов:

светодиодные источники

dt распределение между соседними каналами

Заключение

- В период 2008-2011 завершена разработка основных элементов и подготовлен технический проект Байкальского нейтринного телескопа.
- Этап макетирования заканчивается в 2015 году со вводом в эксплуатацию и испытаниями первого кластера Baikal-GVD (8 гирлянд, 192 OM).
- Завершение первого этапа строительства Нейтринного телескопа в оз. Байкал с эффективным объемом 0.4 km³ планируется в 2019-2020.

Спасибо за внимание