Нейтронные исследования на импульсных источниках. ("Направления нейтронных исследований конденсированных сред на Нейтронном комплексе ИЯИ PAH")

Р.А.Садыков

ИЯИ РАН"

Фото Свечение Черенкова в воде в активных зонах ядерных реакторов.

Генерация нейтронов в процессе «скалывания» (spallation neutrons)

Первая стадия внутриядерного каскада Ускоренный протон

first stage: intranuclear cascade

high-energy proton

intermediate stage: preequilibrium

Результат взаимодействия ускоренных протонов с тяжелыми ядрами: неделящимися (процесс скалывания -предравновесное состояние слева) и делящимися (процесс деления справа). Среди вторичных частиц преобладают нейтроны. Средняя

энергия на нейтрон в реакции скалывания составляет ~30 МэВ, а в реакции деления -150 МэВ. Таким образом, эффективность выбивания нейтронов в реакциях скалывания примерно в пять раз выше, чем при делении.

Промежуточная стадия:

Вторая стадия: испарение и/или деление

AN AN MR

Экспериментальный комплекс

Расположение объектов экспериментального комплекса (систем проводки пучков, биологической защиты, нейтронных мишеней и нейтронографических установок на нейтроноводах).

Нейтронные исследования на основе ускорительно-управляемых нейтронных источников :

- Новое поколение импульсных источников нейтронов на основе сильноточных ускорителей протонов средних энергий (0.45 1.3 ГэВ) становятся одними из важнейших инструментов исследования вещества, конденсированных сред (~ 95% времени работы ускорителей), ядерной физики (~ 2 3%) и работ прикладного характера (~ 2%).
- Основное преимущество нейтронных источников такого типа состоит в следующем:
 Ядерная безопасность;

Широкий спектр нейтронов от холодных до энергии нескольких сотен МэВ;

- ■Возможность использования в экспериментах времяпролетной методики для сепарации нейтронов по энергиям и изменения временных и частотных характеристик в широких пределах;
- •Низкое энерговыделение в расчете на один произведенный нейтрон в реакциях взаимодействия протонов средних и высоких энергий с материалом мишени (spallation процесс) по сравнению с реакцией деления.

Это обстоятельство позволяет получать в источниках нейтронов на основе сильноточных ускорителей существенно более высокие локальные плотности потоков нейтронов, чем в ядерных реакторах при сопоставимых плотностях тепловыделения.

Линейный ускоритель

Зависимость энергии от количества клистронов

В настоящее время в ИЯИ РАН формируется центр нейтронных и рентгенографических исследований для физики конденсированных сред, материаловедения, геофизики. Основой центра являются установки на двух источниках нейтронов - РАДЭКС и ИН-06 и парк современных рентгеновских дифрактометров. Уже смонтированы установки для нейтронного рассеяния на 4х экспериментальных каналах с широким выбором опций измерения: дифракция, рефлектометрия, неупругое рассеяние, малоугловое рассеяние. На стадии проектирования находятся еще несколько установок, включая спектрометры неупругого рассеяния нейтронов прямой и обратной геометрий. Условия на образце включают в себя низкие температуры, высокие давления (в том числе для образцов объемом в несколько см3), возможность наводораживания и in situ измерений под давлением газа

Нейтронный комплекс ИЯИ РАН:

- Импульсный источник тепловых нейтронов ИН-06
- Импульсный источник эпитепловых и тепловых нейтронов РАДЭКС
- Спектрометр по времени замедления нейтронов в свинце CB3-100

Используемые методы исследований основаны на особых свойствах нейтрона, таких как:

•отсутствие электрического заряда, что позволяет нейтронам проникать внутрь образцов без взаимодействий с атомами вещества;

•наличие магнитного момента дает возможность исследования микроскопической магнитной структуры объекта, включая магнитные флуктуации в материале;

•используя наличие спина нейтрона можно изучать ориентацию ядер в атомах среды;

•энергия нейтронов может быть сопоставима с энергиями элементарных возбуждений, что позволяет исследовать колебания молекул, решеточные моды, динамику атомных движений;

•длина волны нейтронов сравнима с межатомными расстояниями. Это позволяет получать информацию о деталях структуры с размерами от 10⁻¹⁵ до 10^{-6 м.}

Линейный ускоритель и Экспериментальный комплекс

Источник нейтронов ИН-06

Принципиальная схема импульсного источника нейтронов в защитном боксе.

1- активная зона, 2- замедлители, 3- бериллиевый отражатель, 4 - ампула (модуль) в состав которой входят активная зона, замедлители и защитные стальные пробки. 5 - газовый бак (диаметр ~ 1500 мм), 6 - тепловая защита, 7 - дистанционно-разъемное уплотнение, 8 - датчик положения пучка, 9 - ионопровод, 10 - железная защита, 11 - съемные стальные защитные пробки, 12 - нейтроновод

Источник нейтронов ИН-06

ИМПУЛЬСНЫЙ ИСТОЧНИК НЕЙТРОНОВ ИН - 06

- 1 Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.
- Многофункциональный нейтронный малоугловой спектрометр (рефлектометр) "Горизонт".
- 3 Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"
- 4 Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".
- **5** Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

Сравнение спектров нейтронов от длины волны нейтрона для каналов различных установок ИН-06 нормированных на максимум пиков.

- Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.
- Многофункциональный нейтронный малоугловой спектрометр (рефлектометр) "Горизонт".
- 3 Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"
- Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".
 - Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

- 1. Поверхность замедлителя
- 2. Коллиматор
- 3. Колодец
- 4. Защита источника

- 5. Нейтроновод
- 6. Дифрактометр обратного рассеяния
- 7. Образец
- 8. Дифрактометр высокой интенсивности
- 9. Дифрактометр ДМУРН
- 10. ПЧД

(5)

11. Ловушка пучка

Блок дифрактометра высокого разрешения содержит пакет Не3 детекторов сфокусированных по времени пролета и расположенных в геометрии отражения назад внутри вакуумируемой камеры, предназначен для порошковой дифрактометрии. Колличество детекторов в пакете – 13. Разрешение - 0,3%. Диапазон углов рассеяния а - 156°-165°. Диапазон определяемых размеров - 0,05 -0,5нм.

Временная фокусировка нейтронных детекторов в блоке дифрактометра обратного рассеяния спектрометра *МНС*

$$L=L_1+L_2(\alpha)$$

$$Q = \frac{2m}{\hbar} \cdot \left(\frac{L\sin(\alpha)}{t}\right) = \frac{4\pi \sin \alpha}{\lambda}$$

$$L_2(\alpha) = L_1 \cdot \left[\frac{1 + L_2(\pi)/L_1}{\sin(\alpha/2)}\right] - 1$$

Нейтрон с заданным переданным импульсом *Q* попадает в любой из детекторов в одно и тоже время, что позволяет добиться высокой скорости счета и упрощает процесс сбора и обработки данных.

Нейтронограммы поликристаллического абразива на основе синтетического алмаза-карбонадо измеренные в ноябре 2010 на установках «Геркулес» (ИЯИ-ИФВД-РНЦ КИ, 10м пролетная база) и МНС (ФИ РАН-ИЯИ, 20-ти метровая пролетная базе при углах рассеяния детекторы расположены под углами 87 и 93 градуса соответственно).

Нейтронограмма поликристаллического абразива на основе синтетического алмаза-карбонадо измеренная в ноябре 2010 на установке МНС (ФИ РАН-ИЯИ) с помощью детектора обратного рассеяния и фокусировкой по времени пролета.

Нейтронный малоугловой спектрометр-рефлектометр «Горизонт».

Нейтронная рефлектометрия позволяет изучать такие объекты,

как:

- •Магнитные наноструктуры,
- •Полупроводниковые гетероструктуры,
- •Биологические мембраны,
- •Тонкие металлические, полупроводниковые и полимерные пленки.

Малоугловое рассеяние нейтронов применяется для исследования таких объектов,

как:

- •Полимеры, стекла и другие аморфные тела
- •Биологические макромолекулы, вирусы и т. п.
- •Нанотрубки, фуллерены и другие наночастицы
- •Коллоидные растворы
- •Дефекты в материалах

ИМПУЛЬСНЫЙ ИСТОЧНИК НЕЙТРОНОВ ИН - 06

- Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.
- 2 Многофункциональный нейтронный малоугловой спектрометр (рефлектометр) "Горизонт".
- 3 Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"
- 4 Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".
- 5 Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

На импульсном источнике нейтронов ИН-06 в ИЯИ РАН совместно с ПИЯФ РАН завершена работа по созданию нейтронного малоуглового спектрометра-рефлектометра «Горизонт».

Спектр нейтронов на выходе нейтроновода установки «Горизонт», измеренный в ноябре 2010, при работе нового импульсного источника нейтронов ИН06 ИЯИ РАН.

ИМПУЛЬСНЫЙ ИСТОЧНИК НЕЙТРОНОВ ИН - 06

- 1 Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.
- 2 Многофункциональный нейтронный малоугловой спектрометр (рефлектометр) "Горизонт".
- 3 Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"
- 4 Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".
- 5 Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

Автоматизированный дифрактометр для исследования струтуры монокристаллов«КРИСТАЛЛ»

Рис. 2. Спектры дифракции нейтронов на монокристалле Кbг измеренные на однокристальном спектрометре установки для исследования эффектов не сохранения пространственной четности установленной на 8 канале ИН-06. Зеленые треугольники вверх - угол $\Theta=0,191968$ радиана, синие треугольники вниз - $\Theta=0,057964$ радиана. Сплошная кривая - пропускание, угол 0.

ИМПУЛЬСНЫЙ ИСТОЧНИК НЕЙТРОНОВ ИН - 06

- 1 Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.
- Многофункциональный нейтронный малоугловой спектрометр (рефлектометр) "Горизонт".
 - Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"
- Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".
 - Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

Специальный герметичный сейф для исследований водородосодержащих образцов в процессе наводораживания

Специальные криостат и камера высокого давления для водородосодержащих образцов.

Совместно с ИФВД и РНЦ КИ

Рис.1 Нейтронографический комплекс «Геркулес-Диас»: 1 - защита источника нейтронов, 2 — герметичный сейф с возможностью создания водородной атмосферы, 3 — пресс для создания давления, 4 — образец в криостате, 5 — блок детекторов упругого рассеяния, 6 — блок детекторов неупругого рассеяния, 7 - двери сейфа, 8 — многоцелевой дифрактометр «Диас», 9 — ловушка нейтронного пучка.

Рис.

Схема сектора «Геркулес»:

1 – Бетонная опора под

пресс,

2 – Нейтронный концентратор,

3 – Металлическая

платформа,

4 - Пресс,

5 – Герметичный сейф,

6 - Ловушка,

7 – Опора под концентратор нейтронов.

Нейтроно - оптический тракт комплекса Геркулес - Диас

Нейтронный концентратор

длина 1800 мм

размеры внутреннего трапециевидного канала (мм).

горизонталь: 55

вертикаль: 75

выходной

горизонталь: 24

вертикаль: 48

«Суперзеркала» - нейтроннооптические элементы с многослойным покрытием на основе Ті и Nі. «Суперзеркала» для «нейтронного концентратора» должны обеспечивать критический угол отражения нейтронов не менее 2.5 величины критического угла изотопа ⁵⁸Ni (т.е. кратность «суперзеркала» т≥2.5).

Нейтронные коллиматор и концентратор позволяют увеличить интенсивность падающего на образец потока нейтронов в ~ 3 раза для нейтронов с λ>2,5 Å

Сравнение спектров нейтронов от длины волны нейтрона для каналов различных установок ИН-06 нормированных на максимум пиков.

Спектр прямого пучка нейтронографической установки высокого давления «Геркулес», максимум длины волны нейтронов 1.2A. **25Ноября2010г.**

Нейтронограмма поликристаллического абразива на основе синтетического алмаза-карбонадо, измеренная на установке «Геркулес» (ИЯИ-ИФВД-РНЦ КИ) при угле рассеяния близком к 90 град.

Нейтронограмма сплава с нулевой матрицей TiZr для элементов камер высокого давления и контейнеров образцов для нейтроногафических измерений.

Импульсный источник эпитепловых нейтронов на базе модифицированной ловушки: установка РАДЭКС с времяпролетными спектрометрами

Установка РАДЭКС (модифицированная ловушка) -

Это работающий в настоящее время в ИЯИ РАН импульсный источник тепловых и эпитепловых нейтронов с нейтроноводами для исследований динамики и структуры конденсированного состояния веществ, включая наноматериалы методом времени пролета.

В настоящее время проведены первые эксперименты показавшие возможность исследования структуры методом нейтронографии на данном источнике.

Нейтронограмма поликристаллического железа полученная на импульсном источнике нейтронов РАДЭКС-ИЯИ РАН с помощью времени пролета с использованием макетного варианта спектрометра ДИАС (совместно с РНЦ-КИ). (27 Апреля 2007г.)

Спектр установки РАДЭКС по сравнению с источником тепловых нейтронов ИН-06 значительного «обагащён» эпитепловыми нейтронами, что позволяет развивать новые методы исследования динамики конденсированного состояния веществ, включая наноматериалы. Глубоко неупругое рассеяние эпитепловых нейтронов позволяет определить кинетическую энергию ядер в структуре веществ, что недоступно другим методам. В настоящее время проведены первые тесты с целью разработки и создания подобной установки имеющий аналог в ISIS(Англия).

Возможности 50 метровой пролётной базы установки РАДЭКС нейтронного комплекса ИЯИ РАН для исследований в области физики конденсированных сред

На время-пролётном нейтронном спектрометре РАДЭКС московской мезонной фабрики существует на настоящий момент несколько пролётных баз — 20м, 30м, 50м

Один из спектров, обработанный по Ритвельду. Авторы благодарят А.М. Балагурова (ОИЯИ) за обработку спектров.

Рассеяние нейтронов на тяжёлой воде

Таким образом источники тепловых нейтронов ИН-06 и эпитепловых и тепловых нейтронов РАДЭКС взаимодополняют друг друга, используя более широкий спектр нейтронов, что не реализовано в других нейтронных центрах.

Установки рентгеноструктурного анализа

Порошковый дифрактометр STADI MP фирмы STOE.

•4-х кружный дифрактометр для исследования моно-кристаллов при низких температурах фирмы HUBER

•дифрактометр для исследования монокристаллов IPDSII с IMAGE PLATE фирмы STOE.

Ближайшие цели

- Отработка регистрации нейтронов на установках
- Оснащение нейтронных спектрометров позиционно-чувствительными детекторами
- Подготовка к исследованиям материалов при экстремальных условиях

Возможности развития нейтронного комплекса ИЯИ РАН.

ПРОЕКТ УСТАНОВОК НЕУПРУГОГО РАССЕЯНИЯ НЕЙТРОНОВ И ДИФРАКТОМЕТРА ЭПИТЕПЛОВЫХ НЕЙТРОНОВ НА ИМПУЛЬСНОМ ИСТОЧНИКЕ ИН-06 ИЯИ РАН

Возможности развития нейтронного комплекса ИЯИ РАН

- Увеличение числа используемых нетроноводов за счет ввода в эксплуатацию трех каналов РАДЭКС и трех каналов ИН-06, направленных за пределы здания экспериментального комплекса. Оснащение этих каналов установками.
- Разработка и создание мишени второго бокса ИН-06 для получения холодных нейтронов. Ввод в эсплуатацию 7 каналов для работы установок на холодных нейтронах. Создание соответствующих нейтронографических установок.

Необходимо отметить участников подготовки к научной эксплуатации нейтронных источников и установок Нейтронного комплекса ИЯИ РАН.

- Коптелов. Э.А.¹, Грачев М.И.¹, Рябов Ю.В.¹, Алексеев А.А.¹, Сидоркин С.Ф.¹, Грачев М.И.¹, Федченко В.А.¹, Артюшин А.П.,
- Литвин В.С.¹, Клементьев Е.С.^{1,4}, АксеновС.Н.¹, Марин В.Н., Поташов С.И., Кузнецов В.Л., Волков А.Н., Кузнецов С.П.³, Алексеев П.А.⁴,
- Трунов В.А.⁵, Булкин А.П.⁵, Ульянов В.А.⁵ и др.
- ¹ Институт ядерных исследований РАН, Москва
- ² Институт физики высоких давлений РАН, Троицк
- ³ Физический институт им. П.Н.Лебедева РАН, Москва
- ⁴ РНЦ «Курчатовский институт», Москва
- 5 Петербургский институт ядерной физики, Гатчина

Благодарю за внимание

- Сектор конденсированных сред ИЯИ РАН
 - 1. Садыков Р.А.- кфмн, Зав СКС.
- 2. Клементьев Е.С.- кфмн, снс.
- 3. Гаврилюк А.Г.- кфмн, снс.
- 4. Лебедь Ю.Б.- кфмн, снс.
- 5.Литвин В.С.- кфмн, нс.
- 6. Аксенов С.Н.- мнс.
- 7. Трунов Д.Н.- аспирант.
- 8. Столяров А.А.- аспирант.
- 9. Кононыхин А.С.- вед.инж.
- 10. Афонин Е.М.- аспирант.