

Новые методы в экспериментальной ядерной физике и физике частиц

π

Москва, ФИАН, 18 апреля 2017 г.

Б.А.Чернышев¹, Ю.Б. Гуров^{1,2}, С. В. Лапушкин¹, В. Г. Сандуковский²,

Исследование легких нейтронно-избыточных ядер с помощью многослойного полупроводникового спектрометра

- 1 Национальный исследовательский ядерный университет «МИФИ»
- 2 Объединенный институт ядерных исследований

Современные регистрирующие комплексы должны одновременно обеспечивать высокую точность корреляционных измерений частиц и ядер с энергиями до нескольких сотен МэВ/нуклон, идентифицировать новые ядерные состояния и измерять их энергетические уровни с разрешением ~ (0,1–1,0) МэВ.

Решение этих задач требует развитие новых экспериментальных методик и создание спектрометрической аппаратуры с соответствующими характеристиками. С точки зрения достижения высокого энергетического разрешения многослойные системы на основе полупроводниковых детекторов (п.п.д.-телескопы) значительно превосходят установки, состоящие из сцинтилляционных и газовых детекторов

Телескопические п.п.д.

Кремниевые поверхностно-барьерные детекторы (Si(Au)-п.п.д.)

с толщинами от 10 мкм до 1 мм, предназначенные в основном для идентификации частиц

Кремниевые литий-дрейфовые детекторы (Si(Li) –п.п.д.) с толщинами ~ 3 мм Детекторы из сверхчистого германия (HPGe -п.п.д.)

с толщинами 5-10 мм

Основные элементы при регистрации длиннопробежных заряженных частиц с энергией $E \sim 100$ МэВ/нуклон

HPGe-детекторы

Преимущества – большая толщина чувствительного объема; более высокая тормозная способность.

Недостатки – необходимость охлаждение до температуры жидкого азота.

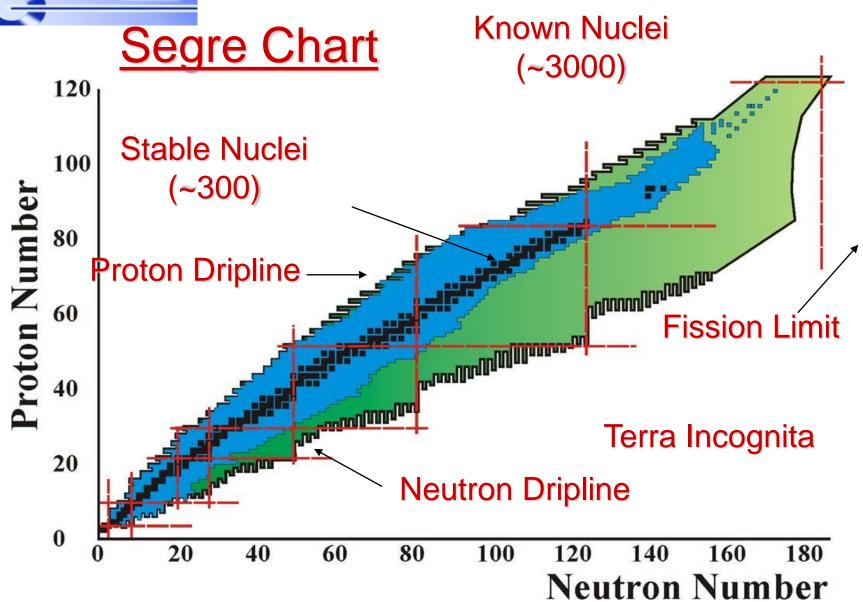
Si -детекторы

Преимущества — эксплуатация при комнатной температуре; возможность создания многоплечевых установок; возможность изготовления тонких п.п.д. для регистрации ядерных фрагментов и пионов низких энергий.

Телескопические п.п.д.

Результаты технологических разработок:

- реализация методов изготовления телескопических детекторов, которые позволили минимизировать их «мертвые» слои;
- изготовлен большой набор детекторов из кремния и сверхчистого германия, которые успешно эксплуатировались в течение длительных ускорительных сеансов.



HPGe-п.п.д.

Десятые Черенковские чтения

Карта нуклидов

Исследование свойств экзотических легких ядер с большим избытком нейтронов — одно из основных направлений развития современной ядерной физики

Мультинейтронные системы—
²n (динейтрон), ³n (тринейтрон), ⁴n (тетранейтрон),...

Сверхтяжелые изотопы водорода—4-6Н, 7Н

<u>Тяжелые изотопы гелия</u> – ⁵He, ^{6,7}He, ⁸⁻¹⁰He

Тяжелые изотопы лития — 8-12Li

Тяжелые изотопы бериллия — 11-13Ве

Энергии возбуждения $0 \le E_x \le 40 \text{ МэВ}$

Методы синтеза нейтронно-избыточных изотопов легких элементов

Реакции деления

1 - Ю.Э.Пенионжкевич, Р.Г.Калпакчиева, Легкие ядра у границы нейтронной стабильности, Дубна - 2016

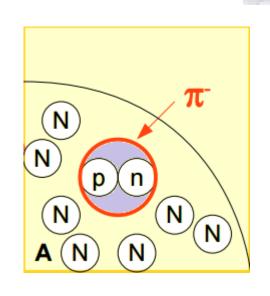
Реакции фрагментации ядра мишени

Реакции фрагментации бомбардирующего иона

Реакции передачи

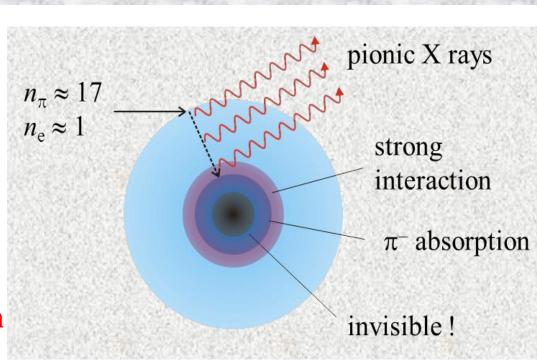
Реакции с тяжелыми ионами, сопровождающиеся эмиссией быстрых частиц

Глубоконеупругие реакции передачи, квазиделение


Реакции перезарядки, включая перезарядку пионов

Реакция поглощения остановившихся отрицательных пионов

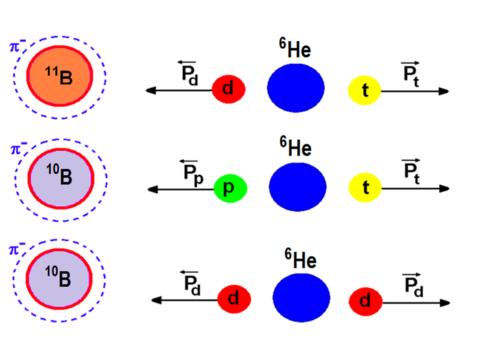
Механизмы поглощения остановившихся пионов


$\pi^- + {}^9\text{Be}$, ${}^{10,11}\text{B} \rightarrow \text{exotic nuclei} + \text{X}$

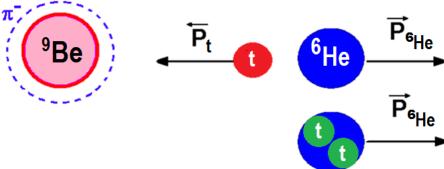
$$\pi^{-}$$
 + pn (T=0, S=1, l_{pn} =0) \rightarrow nn
 π^{-} + pp \rightarrow pn

Кластерное поглощение

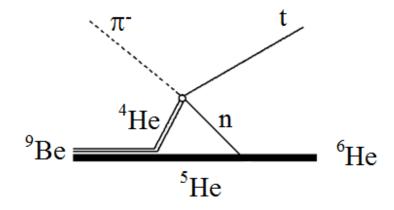
$$\pi^- + {}^4\text{He} \rightarrow \text{nt}$$
 $\pi^- + {}^4\text{Li} \rightarrow \text{pt}$



Вторичный подхват


Поглощение пионов - инструмент образования нейтронно-избыточных ядерных состояний

Трех-частичные каналы



 $P_R \sim 100 \text{ M} \cdot \text{B/c}$

Двух-частичные каналы

 $P_R \sim 500 \div 700 \text{ M}{\circ}\text{B}/\text{c}$

Остаточные ядра формирующиеся при поглощении π⁻-мезонов ядрами

Частицы	p	d	t	³ He	⁴ He
Инклюзив	⁸ He	⁷ He	⁶ He	⁶ H	5 H
p	⁷ H	⁶ H	⁵ H	⁵ n	⁴ n
d	⁶ H	5 H	⁴ H	⁴ n	³ n
t	5 H	⁴ H	³ H	³ n	² n
³ He	⁵ n	⁴ n	³ n	=	=
⁴ He	⁴ n	³ n	² n	=	-

⁹Be

11**B**

Частицы	p	d	t	³ He	⁴ He
Инклюзив	¹⁰ Li	⁹ Li	⁸ Li	⁸ He	⁷ He
p	⁹ He	⁸ He	⁷ He	⁷ H	6 Н
d	⁸ He	⁷ He	⁶ He	⁶ H	⁵ H
t	⁷ He	⁶ He	⁵ He	⁵ H	⁴ H
³ He	⁷ H	⁶ Н	⁵ H	⁵ n	⁴ n
⁴ He	⁶ H	⁵ H	⁴ H	⁴ n	³ n

Поглощение пионов - инструмент образования нейтронно-избыточных ядерных состояний

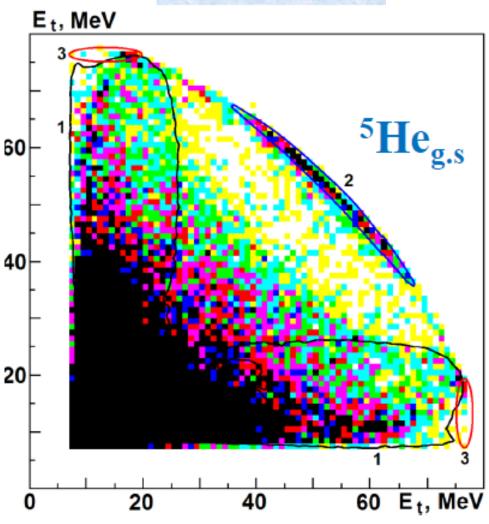
Преимущества и недостатки

Преимущества метода:

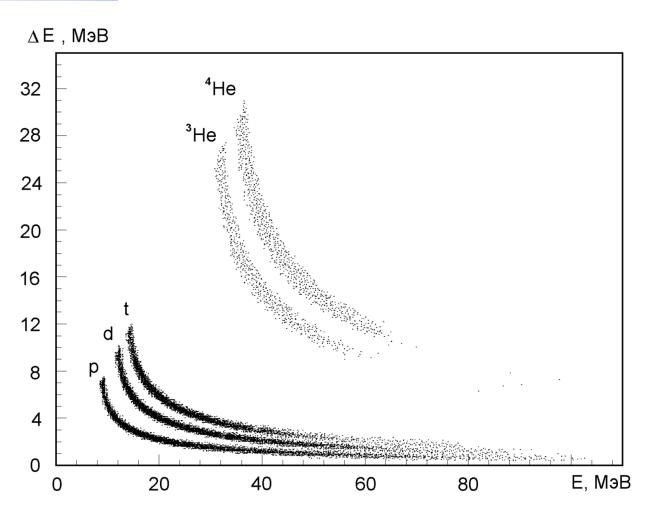
- ullet Образование остаточных ядер с большим избытком нейтронов ${
 m N}>> {
 m Z}$
- Отсутствие погрешностей, обусловленных энергетическим разрешением и угловой расходимостью пучка

$$E_0 = M_A + m_{\pi} - /B_{\pi}/; \qquad P = 0$$

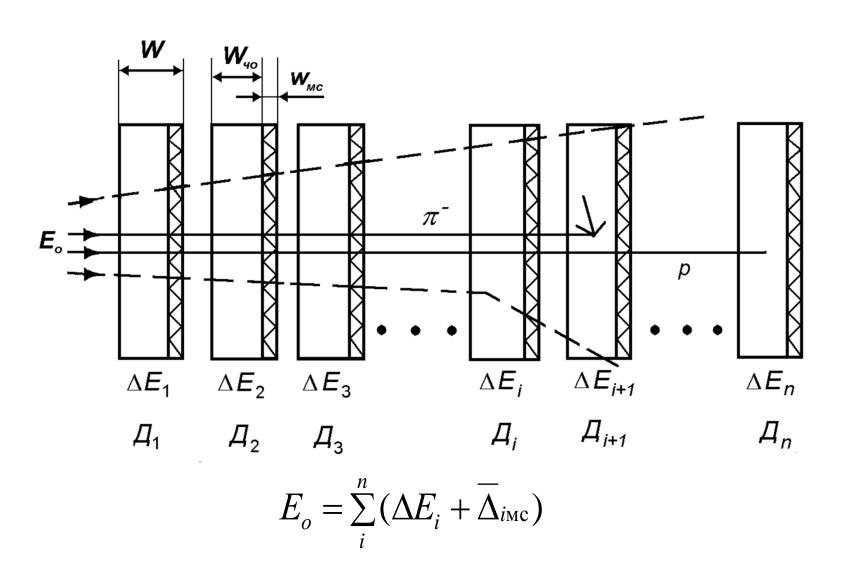
- Большая область исследуемых энергий возбуждений $0 \le E_x \le 40 ext{M}$ $\ni ext{B}$
- Возможность исследования широкой области ядер в одном экспериментальном сеансе


Недостатки метода:

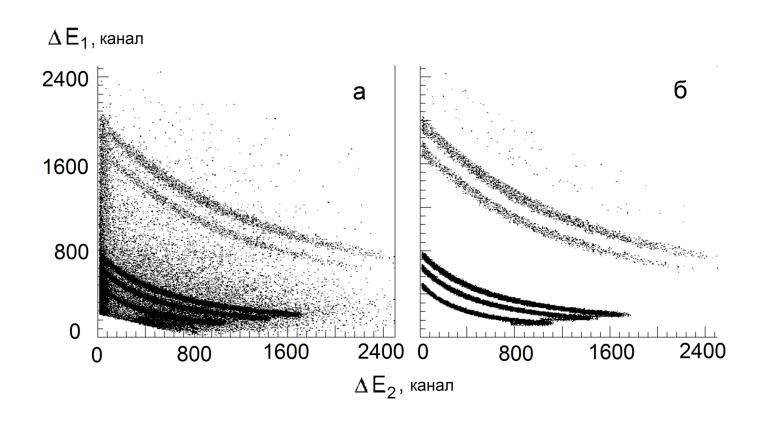
- •Отсутствие надежных теоретических моделей, которые описывают исследуемую реакцию
- Затруднения в определении квантовых чисел исследуемых состояний


Пример диаграммы Далица

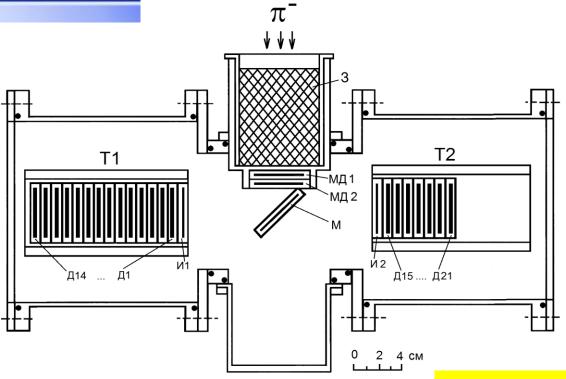
$^{11}B(\pi^-,tt)X$



ΔЕ-Е метод



Структурная схема многослойного п.п.д.-телескопа


Распределение энерговыделений в идентификаторе (ΔE_1) и Si(Li)-п.п.д. (ΔE_2) при регистрации частиц от захвата π^{-9} Be

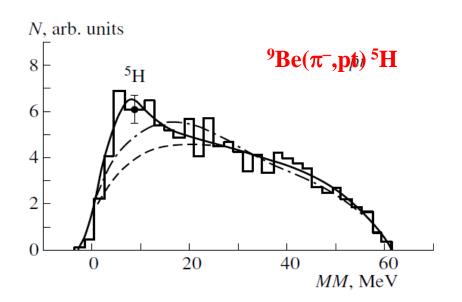
- a до обработки, по критерию χ^2 для гипотезы остановки в 1-ом Si(Li)-п.п.д. телескопа
- **б** после прохождения процедуры отбраковки

Схема двухплечевого п.п.д.-спектрометра для измерений в ПИЯФ

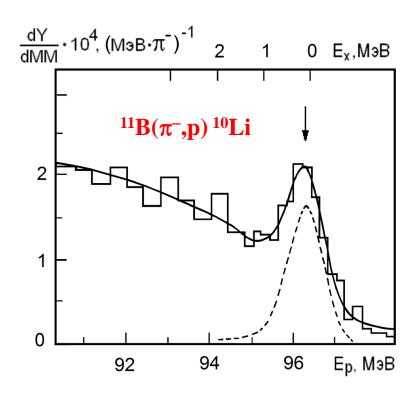
п.п.д.- телескоп: Si(Au)-п.п.д. с W = 200 мкм, 14 (7) Si(Li)-п.п.д. с W \sim 3 мм ($w_{\text{мc}} \sim$ 350 мкм) $E_{p,d,t}$ - 10 - 100 МэВ

T1 и T2 – п.п.д.-телескопы

3 – графитовый замедлитель


M – мишень, пластины Ø32 мм, толщиной ~ 100 мкг/см²

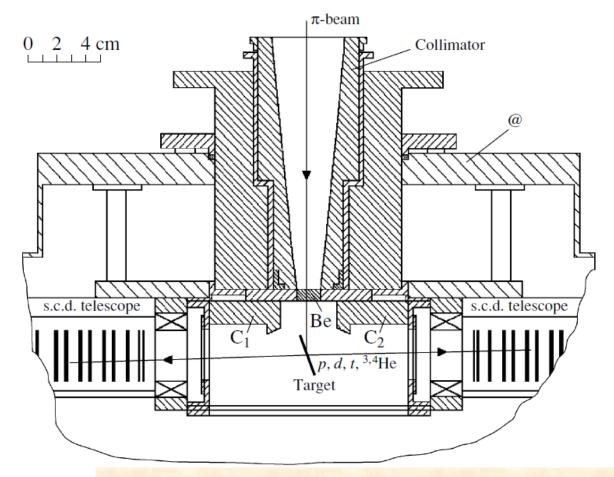
МД1 и МД2 – мониторные детекторы



Первые наблюдения ⁵H и ¹⁰Li

Thoennessen M. Discovery of the Isotopes with $Z \le 10$ // Atom. Data and Nucl. Data Tabl. 2012. 98. 43.

Gornov M.G. et al.// Nucl. Phys. A. 1991. <u>531</u>. 613.



Амелин А.И. и др. // ЯФ. 1990. Т. 52. 1231.

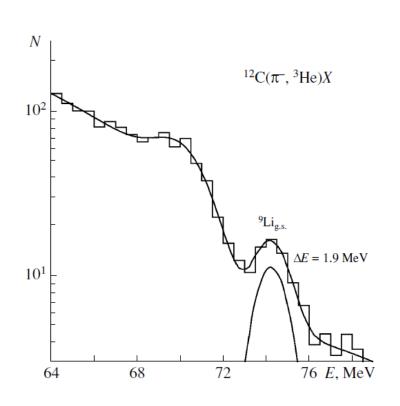
Схема спектрометра (LANL)

Пучок	Мишень	Размеры и примеси	Скорость остановок, 1/с	ППД- Телескопы	Пороги(МэВ)
Eπ= 30 M ₃ B (Δp/p=±1%)	⁹ Be ^{10,11} B ^{12,14} C	Толщина – 25 мг/см ² , (135µм) диаметр – 26 мм, 23% ¹² C в ¹⁴ C	~ 6.104	2 Si(Au) -T=100, 450μm 14 Si(Li) -T= 3 mm, Wd≈0.1mm S= 8 cm ² Ω=55÷15 mctep	$E_{p} \approx 3.5,$ $E_{d} \approx 4,$ $E_{t} \approx 4.5,$ $E_{He} \approx 15.$

•Gornov M. G. et al. // Nucl. Inst. and Meth. in Phys. Res. A 2000. V. 446. P. 461.

Расчетные и экспериментальные значения энергетического разрешения п.п.д.-телескопа (FWHM) и их составляющие

Энергия частицы, МэВ	E(p) = 98.5	$E(\mathbf{d}) = 93.9$	$E(\mathbf{t}) = 84.1$
Вклады в $\Delta E_{\rm pac}$, кэВ:			
$\Delta E_{ ext{mum}}$	110	230	377
$\Delta E_{ m MC}$	306	237	200
$\Delta E_{_{2,\mathrm{II}}}$	327	219	183
$\Delta E_{ m pac}$, кэВ	462	400	466
$\Delta E_{ m akc}$, кэ ${ m B}$	480 ± 25	410 ± 15	480 ± 30

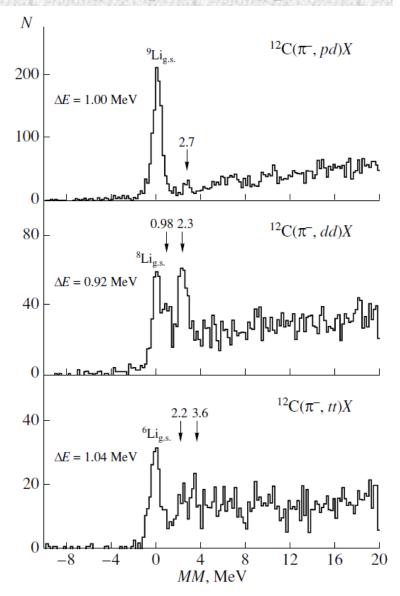


Энергетическое разрешение

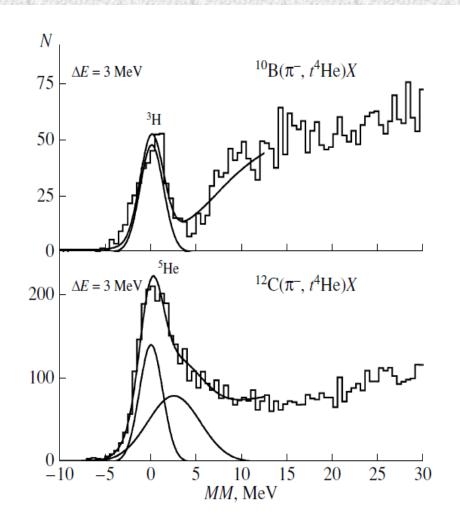
Однозарядные частицы

⁹Be(π⁻,p)X а ⁸He_{g.s.} ∆Е=480кэВ ¹²C(π⁻,d)X б ¹⁰Be_{g.s.} ∆Е=410кэВ 12 C (π^{-},t) X ⁹Be_{g.s.} В ∆Е=480кэВ 86 Е,МэВ

Двухзарядные частицы

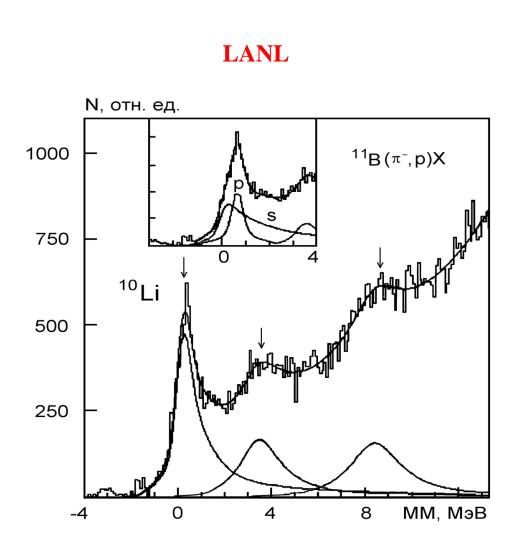


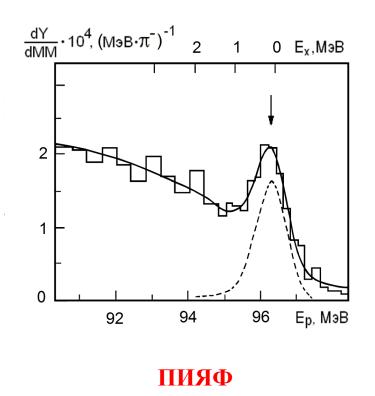
 $\delta E(p, d, t) \leq 0.45 \text{ M}_{3}B$



Разрешение по недостающим массам (ММ)

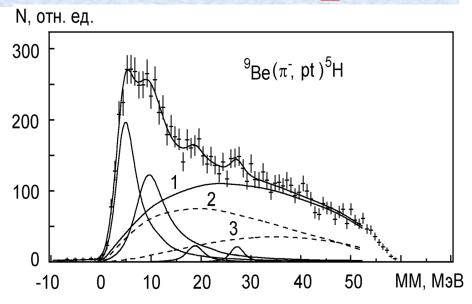
Однозарядные пары

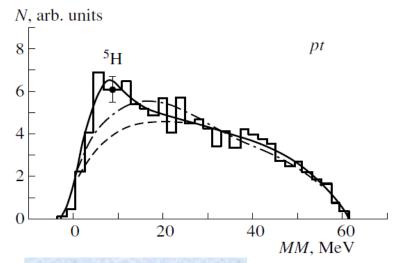

Однозарядные и двухзаряднные пары



 $\delta MM(p, d, t) \leq 1 M \ni B$

Спектр возбуждений изотопа ¹⁰Li





Сверхтяжелый изотоп водорода ⁵H

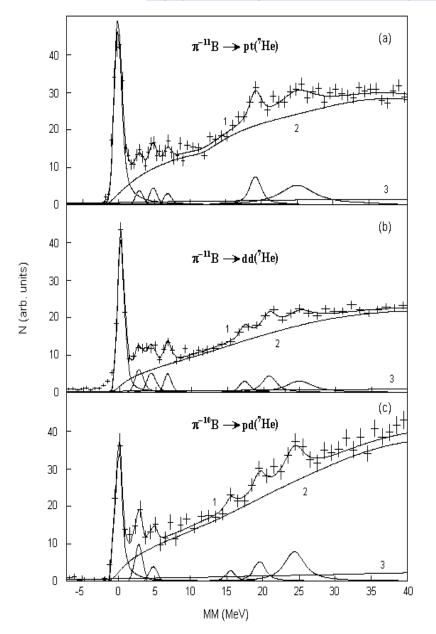
Thoennessen M. Discovery of the Isotopes with $Z \le 10$ // Atom. Data and Nucl. Data Tabl. 2012. 98. 43.

Gornov M.G. et al. // Nucl. Phys. A. 1991. <u>531</u>. 613.

 ${}^{9}\text{Be}(\pi^{-},\text{pt})X, {}^{9}\text{Be}(\pi^{-},\text{dd})X$

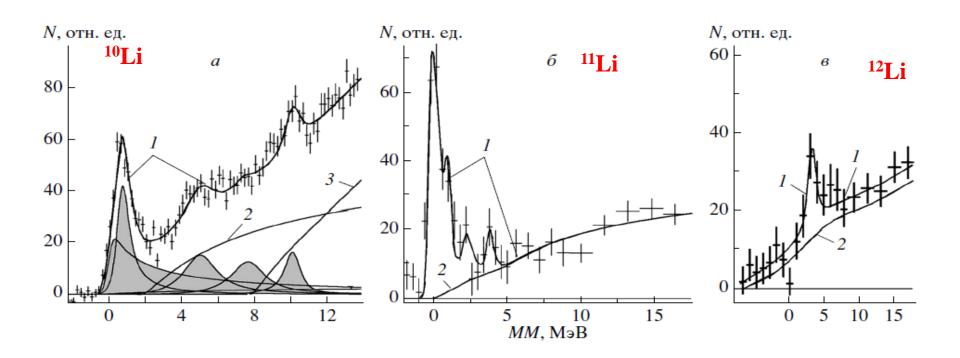
 $^{10}B(\pi^-,p^4He)X,\ ^{10}B(\pi^-,d^3He)X,$ $^{11}B(\pi^-,d^4He)X$ and $^{11}B(\pi^-,t^3He)X$

 $^6\text{Li}(\pi^-,p)X$, $^7\text{Li}(\pi^-,d)X$ and $^9\text{Be}(\pi^-,^4\text{He})X$

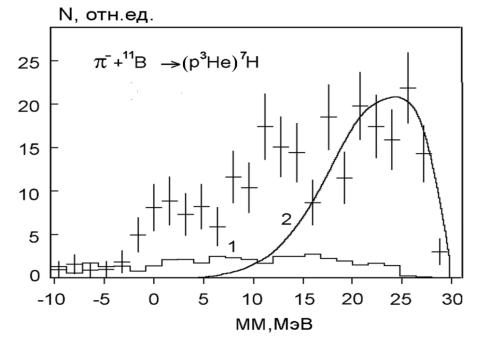

Reaction channel				
⁹ Be (π ⁻ , pt) ⁵ H		⁹ Be (π ⁻ , dd) ⁵ H		
E_r , MeV	Γ, MeV	E_r , MeV	Γ, MeV	
5.2(3)	5.5(5)	6.1±0.4	4.5±1.2	
10.4(3)	7.4(6)	11.4±0.7	5±1	
18.7(5)	3.9(2.0)	18.3±0.5	5.5±1.7	
26.8(4)	3.0(1.4)	26.5±1.0	6±3	

Reaction	E_r , MeV	Γ, MeV	
p (⁶ He, pp) ⁵ H	1.7±0.3	1.9±0.4	RIKEN
$t(t,p)^5H$	1.8±0.1	≤ 0.5	JINR
	2.7±0.1	≤ 0.5	
$t(t,p)^5H$	≈1.8	≈1.3	JINR
	~ 5-6		
	~ 5-6		
¹² C (⁶ He, 2nt)X	~3.0	~6.0	GSI

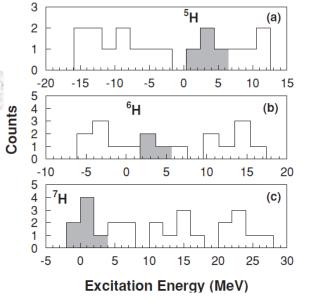
Образование ⁷**Не при поглощении**

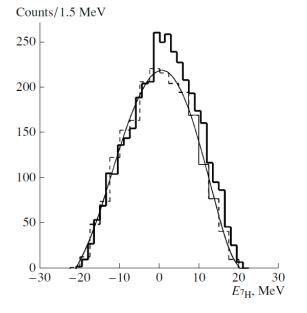

остановившихся пионов

E_x , MeV	Γ, MeV	Наши	Work
		данные.	
g.s.	-	1), 2), 3)	[1]
0.6(1)	0.75(8)		[2]
0.9(5)	1.0(9)		[3]
≈ 1.45	≈ 2		[4]
≈2.6	≈2		[5]
2.9(3)	2.0(3)		[6]
2.92(9)	1.99(17)		[1]
3.1(1)	≤ 0.5	1), 2), 3)	
4.9(2)	≤ 0.5	1), 2), 3)	
5.8(3)	4(1)		[7]
6.7(2)	≤ 0.5	1), 2)	
≈8.0	~7		[8]
16.9(5)	1.0(3)	2), 3)	
≈18.0	~7		[8]
18.0(1.5)	~10		[9]
19.8(3)	1.5(3)	1), 2), 3)	
20(1)	9(2)		[10]
24.8(4)	4.6(7)	1), 2), 3)	


 E_r (IAS) ~ 3 MeV

Тяжелые изотопы лития ¹⁰⁻¹²Li


Сверхтяжелый изотоп водорода ⁷H


 ${}^{9}Be(\pi^{-},pp)X$, ${}^{11}B(\pi^{-},p^{3}He)X$

 E_r (IAS) ~ 0 MeV

RIKEN

Разработан и реализован метод прецизионного измерения энергии заряженных частиц с помощью многослойных п.п.д.- спектрометров на ускорителях.

Разработанный подход позволяет измерять энергию частиц в диапазоне от нескольких до сотен МэВ и идентифицировать частицы с различными массами – от пионов до многозарядных ядерных фрагментов.

Благодарю за внимание!