АТЛАС свежие результаты и планы развития

ФИАН

XI Черенковские чтения

новые методы в экспериментальной ядерной физике и физике частиц 17/04/2018

А.Зайцев, НИЦ КИ-ИФВЭ, Протвино

Как найти «новую физику» на ускорителях/коллайдерах:

- Прецизионные измерения
- Экзотические процессы
- Редкие процессы
- Новые объекты
- •

Сосредоточимся на тяжелых объектах: t W (Z) H

Модернизация АТЛАС:

- Планы
- Ожидаемые результаты

БАК –фабрика тяжелых частиц

	Годы	2010- 2012	2015- 2017	
	٧S	7 - 8 ТэВ	13 Тэв	
	L fb-1	25	80	N sum
\\\/	σnb	10 ²	2·10 ²	
VV	Ν	2,5·10 ⁹	1,6·10 ¹⁰	1,9·10 ¹⁰
7	σ nb	3.10^{1}	6·10 ¹	
L	Ν	7,5·10 ⁸	5·10 ⁹	6·10 ⁹
	σnb	1,5·10 ⁻²	6·10 ⁻²	
п	Ν	4.10^{5}	$5 \cdot 10^{6}$	5·10 ⁶
	σnb	2·10 ⁻¹	1	
t	N	$5 \cdot 10^{6}$	8.10^{7}	8·10 ⁷

m_W

```
Particle Data Group:
m<sub>w</sub> = 80385 ± 15 MeV (LEP и Тэватрон)
```

```
СМ предсказание m<sub>w</sub> = 80362 ± 8 MeV
```

 $m_W - «слабое звено»$ Мечта: 15 МэВ \rightarrow 8 МэВ

В экспериментах на LHC большая статистика событий с W-бозоном. Основная проблема – систематика.

АТЛАС 2017

√S = 7 T∋B L=4.6 fb -1

7,8 \cdot 10⁶ событий W \rightarrow μ v

5,9 · 10⁶ событий W → ev

Eur.Phys.J. C78 (2018) no.2, 110

 $\vec{u}_{\rm T} = \sum_{i} \vec{E}_{{\rm T},i}, -\vec{u}_{\rm T}$ provides an estimate of the boson transverse momentum. $\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right)$ missing transverse momentum $m_{\rm T} = \sqrt{2p_{\rm T}^{\,\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$ transverse mass

Стратегия анализа

Масса W-бозона определяется в результате фитирования распределений по поперечному импульсу лептонов (Якобиан-пик на m/2) и по поперечной массе (конец спектра на m). В первом методе существенна зависимость p_T от поперечного импульса W-бозона и его спинового состояния, во втором — зависимость m_T от характеристик частиц «отдачи». В качестве шаблонных распределений использованы результаты MK — моделей.

Для калибровки детекторов и для настройки параметров моделей использовались события с Z- бозонами (Z $\rightarrow \mu + \mu$ - и Z $\rightarrow e + e$ -) при энергиях VS = 7 и 8 ТэВ (m₇ для настройки p₁, p₁^Z для настройки m₁^{miss}).

Tecm c m_z

m_W

m_W : m_{top} : m_H

Top quark mass in the t $\tilde{t} \rightarrow$ dilepton channel | Physic

Physics Letters B 761 (2016) 350 - 371

√S = 8 T∋B L = 20,2 fb-1

$$p p \rightarrow t \ (b \ W^+ \rightarrow l^+ v) \ \tilde{t} \ (\tilde{b} \ W^- \rightarrow l^- v) + X$$

$$l l: e+e-, e \mu, \mu+\mu-, \tau+\tau- \rightarrow l+l-X$$

Отбор событий

- 1. Лептон в триггере
- 2. Два лептона с противоположными электрическими зарядами
- 3. Для событий с лептонами одинакового аромата (е е, $\mu \mu$) $E_{T}^{miss} > 60 \ \Gamma \ni B, \ m_{II} > 15 \ \Gamma \ni B, \ m_{II} \neq m_{z} \pm 10 \ \Gamma \ni B$
- Для канала еµ ∑ Р_т > 130 ГэВ
- 5. Две струи с P_T > 25 ГэВ и |η| < 2.5, хотя бы одна с признаком bкварка

Фитирование шаблонами

600

Events / 2 GeV tt, m = 172.5 GeV Correct match Uncertainty Wrong / no match Single top NP/fake leptons Z+jets 500 WW/WZ/ZZ ATLAS 400 √s=8 TeV, 20.2 fb⁻ 300 200 100 Data/MC 100 120 60 80 140 160 40 m_b^{reco} [GeV]

Data

В результате фита находим массу m_{top} = 172.99 ГэВ и статистическую ошибку σ = 0.41 ГэВ

Систематическая ошибка

Signal Monte Carlo generator Initial- and final-state QCD radiation Underlying event Colour reconnection Parton distribution function **Background normalisation** W=Z+jets shape Fake leptons shape Jet energy scale Relative b-to-light-jet energy scale Jet energy Jet reconstruction efficiency Jet vertex fraction b-tagging Leptons **Emiss** Pile-up Total systematic uncertainty 0.74±0.29

m_{top}= 172.99 ± 0.41(стат.) ± 0.74(сист.) ГэВ

Объединение с данными АТЛАСа при √ S = 7 ТэВ дает

m_{top}= 172.84 ± 0.34(стат.) ± 0.61(сист.) ГэВ

m_{top}= 172.84 ± 0.70 ГэВ

H→4 I

Фоновые процессы:

- Z+jets, t t̃, WZ: вклад мал
- ZZ*: надежно вычисляется

Final state	Signal (125 GeV)	ZZ*	$Z + jets, t\bar{t}, WZ, ttV, VVV$	Expected	Observed
4μ	20.6 ± 1.7	15.9 ± 1.2	2.0 ± 0.4	38.5 ± 2.1	38
$2e2\mu$	14.6 ± 1.1	11.2 ± 0.8	1.6 ± 0.4	27.5 ± 1.4	34
$2\mu 2e$	11.2 ± 1.0	7.4 ± 0.7	2.2 ± 0.4	20.8 ± 1.3	26
4e	11.1 ± 1.1	7.1 ± 0.7	2.1 ± 0.4	20.3 ± 1.3	24
Total	57 ± 5	41.6 ± 3.2	8.0 ± 1.0	107 ± 6	122

 $110 < m_{AE} < 135 \text{ GeV}$

CHUICINIATHKA				
Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]			
Muon momentum scale	40			
Electron energy scale	20			
Background modelling	10			
Simulation statistics	8			

m_H^{ZZ*} = 124.88 ± 0.37 (стат) ± 0.05 (сист) ГэВ = 124.88 ± 0.37 GeV

$H \rightarrow \gamma \gamma$

Отбор, реконструкция: Два «хороших» ү-кванта с Е_т > 25 ГэВ Нахождение вершины Классификация событий (31 класс), например «ggH 0J CEN»

Разрешение: σ (m_H) = 1.42-:-2.14 ГэВ

Фон: параметризуется гладкой функцией для каждой категории

Систематика: σ (m_H) = 0.36 ГэВ - калибровка, нелинейность, вещество, форма ливня, определение вершины, модель фона.....

Channel	Mass measurement [GeV]
$H\to ZZ^*\to 4\ell$	$124.88 \pm 0.37 \text{ (stat)} \pm 0.05 \text{ (syst)} = 124.88 \pm 0.37$
$H \rightarrow \gamma \gamma$	125.11 ± 0.21 (stat) ± 0.36 (syst) = 125.11 ± 0.42
Combined	$124.98 \pm 0.19 \text{ (stat)} \pm 0.21 \text{ (syst)} = 124.98 \pm 0.28$

18

Программа развития БАК

HILUMILHC-Del-D1-10-v1.0

Нам предстоит работать на БАК еще 20 лет. В 2038 году будет так: √S=14 ТэВ L=7.5·10³⁴ cm-2 c-1 ∫L dt = 4 ab-1 (инт. светимость и рад. нагрузка в 50 раз выше сегодняшней) 10⁴ треков на столкновение

Модернизация Фаза I 2019-2020 годы

Основные проекты:

- Новые малые мюонные колеса (New Small Wheels, NSW)
- Быстрый трекер (Fast Tracker, FTk)
- Жидкоаргоновый калориметр (LAr)
- Сцинтилляционный калориметр (TileCal)
- Триггер и система сбора данных (TDAQ)
- Разные проекты
 - мюонные детекторы
 - малоугловые детекторы

Новые малые колеса (NSW)

Мюонные малые колеса, внутренние торцевые мюонные детекторы, находятся в области особенно высокой загрузки. Существующие детекторы не смогут работать при повышенной светимости: -не выдержат загрузки -не позволят организовать триггер. Они заменяются на новые: -**тонкозазорные камеры** с малыми стрипами, **sTGC** (хороший тайминг, пространственное (угловое) разрешение достаточно для триггера)

- МикроМегас, ММ (основной трекер, разрешение 0.1 мм, гранулярность 0.4 мм)

Изготовление NSW

Изготовление sTGC в НРЦ КИ-ПИЯФ

- 1. Намотка проволок.
- 2. Готовый модуль 0

Изготовление МикроМегас в ОИЯИ

- 1. Изготовление считывающих панелей
- 2. Сборка квадруплетов

Модернизация Фаза II 2024-2026 годы

Основные проекты:

- -Новый внутренний трекер
- -Жидкоаргоновый калориметр
- -Мюонная система
- -Высокогранулярный таймер
- -Триггер и система сбора данных

Внутренний трекер

Технические требования

Новый трековый детектор разрабатывается для эксплуатации в течение 10 лет при:

- светимости 7.5 \cdot 10 ³⁴ см-2 с-1,
- 25 нс между столкновениями банчей,
- интегральной светимости до 4000 fb-1,
 среднем числе взаимодействий на столкновение банчей <µ>=200

Детектор должен обеспечивать высокую эффективность, разрешение, реконструкцию вершины, b-мечение в диапазоне |η|=4

Типичное событие. 10⁴ треков

Конструкция

внутреннего трекера

Радиус 1 м, длина ± 3 м Все активные элементы кремниевые.

Внутренняя часть, 5 слоев, - пиксельные детекторы, Внешняя часть, 4 стерео-слоя, кремниевые полосковые детекторы. Детектор находится в соленоидальном магнитном поле 2 Т.

z [mm]

Пиксельный детектор

Barrel

Endcap Rings

Active area: **12.7 m²** Pixel size: 50x50 (or 25x100) µm² # of modules: 10276 # of FE chips: 33184 # of channels: ~5x10⁹

Конструкция пикселя

Конструкция стрипового детектора

Strip pitch: 75.5 µm (Barrel), 69 to 85 µm (Disk) Strip length: 24.1/48.2 mm (Barrel), 69.9 to 80.7 mm (Disk) # of modules: 17888 # of channels: ~6x10⁷

Количество вещества

Радиационная нагрузка

Эквивалентный флюенс 1 МэВ нейтронов для пикселей и торцевых стриповых детекторов составляет 1.5 · 10^16 см-2 (1140 МРад) и 8.2 · 10^14 см-2 (33.6 МРад) соответспвенно

Детекторы с такими параметрами разработаны и испытаны

Изготовление внутреннего трекера

Внутренний трекер установки АТЛАС стоит 120 млн.шв.фр. В настоящее время изготавливаются опытные образцы, проходит проверку технология массового производства. В изготовлении детектора принимает участие ФИАН (флип-чип процесс) и НИЦ КИ-ПИЯФ (система охлаждения).

Ожидаемые результаты

ATL-PHYS-PUB-2014-016

