

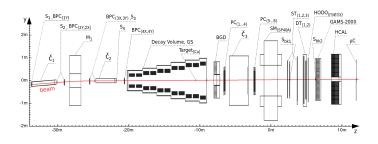
Исследования распадов заряженных каонов на установке ОКА

О.П.Ющенко Коллаборация ОКА (ИФВЭ-ИЯИ-ОИЯИ)

17 апреля 2018

О.П.Ющенко (ИФВЭ)

Установка ОКА



Установка ОКА расположена на вторичном пучке протонного синхротрона У-70 в Протвино.

Установка ОКА

- Используется RF-сепарация для обогащения пучка каонами
 - 2 сверхпроводящих Карлсруэ-ЦЕРН дефлектора.
 - Криогенная система со сверхтекучим Не
- \bullet до 20% каонов в пучке при $P=17.7~{\rm GeV/c}$
- \bullet интенсивность до 5×10^5 каонов в 3-х секундный цикл У-70.
- возможна работа при импульсе пучка P = 12.5 GeV/c
- r.m.s. импульсного распределения пучка 1.5%.

Установка ОКА

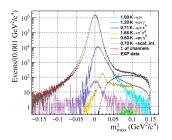
- ullet Триггер: Sc-счетчики S_1 S_3 , черенковские счетчики C_1 , C_2
- ullet Пучковый спектрометр: магнит M_1 , 7 BPCs (1mm, \sim 1500 кан.)
- Распадный объем (He), 670 Pb-Sc (200 каналов ADC).
- Магнитный спектрометр: SM (0.6 Tm, 200 \times 140 cm²), 8 \times 2mm PC (5k), 3 \times 10mm Straw (1k), 2 \times 30mm DT (300), MH
- $\bullet~$ Калориметрия: GAMS-2000 (\sim 2300 каналов 4 \times 4 cm²), BGD (\sim 1050 каналов 5 \times 5 cm²).
- Идентификация мюонов: HCAL GDA (120 20 \times 20 cm 2 Fe-Sc), 4 Sc плоскости $1\times 1~\text{m}^2$

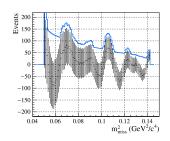
Установка ОКА. Направления исследований.

- Форм-факторы полулептонных распадов:
 - $K^+ \rightarrow e^+ \nu \pi^0$
 - $K^+ \rightarrow \mu^+ \nu \pi^0$
- Форм-факторы полулептонных распадов с фотоном:
 - $K^+ \rightarrow e^+ \nu \pi^0 \gamma$
 - $\bullet \ K^+ \to \mu^+ \nu \pi^0 \gamma$
 - $K^+ \rightarrow e^+ \nu \gamma$
 - $K^+ \rightarrow \mu^+ \nu \gamma$
- Поиск экзотических объектов: тяжелое нейтрино
- Изучение редких распадов:
 - $\bullet \ K^+ \to \pi^+\pi^+\pi^-\gamma$
 - $\bullet \ K^+ \to \pi^+ \pi^0 \gamma$
- Когерентное рождение на ядрах

Поиск тяжелого нейтрино

Рассматривается процесс $K^+ \to \mu^+ \nu_H$. Наличие тяжелого нейтрино будет проявляться как пик в распределении по миссинг-массе. В качестве фонов рассматриваются следующие процессы:

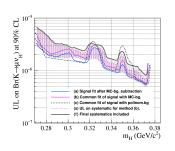

- $K^+ \rightarrow \mu^+ \nu_\mu$
- $K^+ \to \mu^+ \nu_\mu \gamma$
- $K^+ \rightarrow I^+ \nu \pi^0$
- $K^+ \rightarrow \pi^+ \pi^0$
- Рассеяние каона на материале детектора

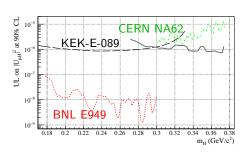

Для всех фоновых процессов произведено детальное Монте-Карло с полным учетом геометрии и материалов детектора, процедур оцифровки сигналов, иммитацией триггерных условий.

Поиск тяжелого нейтрино

Процедура отбора включает

- Отбор пучкового и вторичного треков
- Идентификацию вторичного трека
- Использование калориметров как вето.


Спектр m_{miss}^2 и количество событий с тяжелым нейтрино для различных значений $m_{\nu_{H}}^2$


Поиск тяжелого нейтрино

Результатом анализа является верхняя оценка ${\rm Br}(K^+ o \mu^+ \nu_H)$. Используя соотношение

$$rac{\Gamma(K o \mu
u_H)}{\Gamma(K o \mu
u)} = |U_{\mu H}|^2 \cdot \lambda \cdot f_h$$

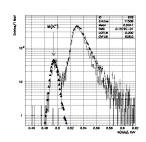
можно получить ограничение на параметр смешивания $(|U_{\mu H}|^2)$

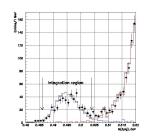
Распад $K^+ o \pi^+ \pi^+ \pi^- \gamma$

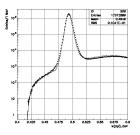
Текущее состояние:

- Статистика 7 событий (1989 год)
- ullet Br $= (1.04 \pm 0.31) imes 10^{-4}$ для $E_{\gamma} > 5$ MeV в с.ц.м.

Для анализа в эксперименте ОКА использовались данные двух сеансов.


Процедура анализа включала отбор по:


- качеству каонного и вторичных треков.
- положению и качеству вершины распада
- идентификации вторичных треков
- энергии фотона
- ullet инвариантной массе $\pi\gamma$
- ullet кинематике системы $\pi^+\pi^+\pi^-\gamma$


Распад $K^+ o \pi^+\pi^+\pi^-\gamma$

Массовый спектр системы $\pi^+\pi^+\pi^-\gamma$ для всех энергий фотона (слева) и для $E_\gamma^*>30$ MeV (в центре) отлично согласуется с комбинацией фоновое+сигнальное MC.

Качество описания данных можно оценить из массового спектра $\pi^+\pi^-\pi^-$ (справа).

Распад $K^+ o \pi^+ \pi^+ \pi^- \gamma$

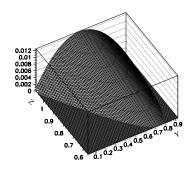
Результаты исследования распада:

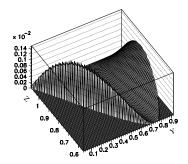
- Статистика: ~ 450 событий
- $Br = (0.71 \pm 0.05) \times 10^{-5}$ для $E_{\gamma} > 30$ MeV в с.ц.м. Предсказание теории: $(0.665 \pm 0.005) \times 10^{-5}$.
- Измерен энергетический спектр фотонов. Спектр и бренчинг совпадают в пределах погрешностей с вычислениями в киральной теории возмущений.
- Измерены асимметрии верх-низ для фотона относительно нормали к плоскости распада адронной системы: $A_{\rm s1} = -0.04 \pm 0.05 \ {\rm u} \ A_{\rm s2} = +0.03 \pm 0.05 \ {\rm для} \ {\rm различных}$ определений нормали.

K_{e3} формфакторы

Наиболее общий вид амплитуды распада $K^+ o I^+
u\pi^0$ имеет вид:

$$M = \frac{-G_F V_{us}}{2} \bar{u}(p_{\nu})(1+\gamma^5) [((P_K+P_{\pi})_{\alpha} f_+ + (P_K-P_{\pi})_{\alpha} f_-)\gamma^{\alpha} - 2m_K f_S - i\frac{2f_T}{m_K} \sigma_{\alpha\beta} P_K^{\alpha} P_{\pi}^{\beta}] v(p_l)$$

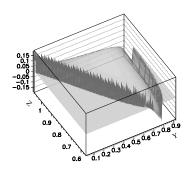

Форм-факторы f_+ и f_- ($\to m_I/M_K \cdot f_0$) – функции $t = (P_K - P_\pi)^2$. Скалярный и тензорный форм-факторы (f_S и f_T) связываются с "новой физикой".

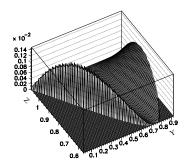

Основные параметризации

ChPT:
$$f_{+}(t) = \underbrace{f_{+}(0)(1 + \lambda'_{+}t/m_{\pi^{+}}^{2} + \frac{1}{2}\lambda''_{+}t^{2}/m_{\pi^{+}}^{4})}_{O(p^{4})}$$
Pole:
$$f_{+}(t) = f_{+}(0)\frac{m_{V}^{2}}{m_{V}^{2}-t}$$
Dispersive:
$$f_{+}(t) = f_{+}(0)\exp(\frac{t}{m_{Z}^{2}}(\Lambda_{+} + H(t)))$$

K_{e3} формфакторы

Анализ K_{e3} распада основан на фите распределения событий на диаграмме Далица в переменных $y=2E_e^*/M_K$ and $z=2E_\pi^*/M_K$




Регулярный вклад

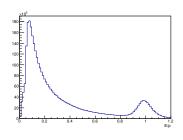
Тензорный вклад

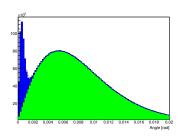
K_{e3} формфакторы

При анализе $K_{\rm e3}$ распада исключительно важны радиационные поправки.

Радиационный вклад

Тензорный вклад

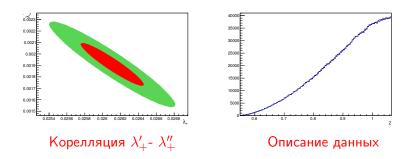

K_{e3} анализ.


Для анализа использованы данные двух сеансов.

- Позитроны по Е/р в электромагнитном калориметре.
- ullet Строго 2 ливня в калориметрах. $0.11 < M_{\gamma\gamma} < 0.16$ GeV
- Кинематический фит гипотезы $K^+ o e^+
 u \pi^0$
- Отбор по угловым переменным.

Количество событий: 5.25M (самая большая в мире!) Оценка вклада фона: < 0.5% ($K+ \to \pi^+\pi^0$).

Произведенное MC в 3 раза больше статистики в RD.



K_{e3} анализ. Результаты.

Фит с линейным форм-фактором: $\lambda_+ = (2.95 \pm 0.022) \times 10^{-2}$. Вычисления в $O(p^4)$ ChPT: $\lambda_+^{ChPT} = (3.1 \pm 0.06) \times 10^{-2}$. Результаты эксперимента ISTRA+: $\lambda_+ = (2.97 \pm 0.050) \times 10^{-2}$.

λ'_{+} (10 ⁻²)	m [GeV]	$\Lambda_{+} (10^{-2})$	$\lambda_{+}^{\prime\prime} (10^{-3})$	$f_t/f_+(0) (10^{-2})$	$f_s/f_+(0) (10^{-3})$
$2.611^{+0.035}_{-0.035}$			$1.91^{+0.19}_{-0.18}$		
	$0.891^{+0.003}_{-0.003}$				
10.035		$2.458^{+0.018}_{-0.018}$	10.10	11.6	130
$2.612^{+0.035}_{-0.035}$	10.004		$1.90^{+0.19}_{-0.19}$	$-1.24^{+1.6}_{-1.3}$	$0.13^{+3.8}_{-4.6}$
	$0.891^{+0.004}_{-0.006}$	10.010		$-1.85^{+2.4}_{-1.2}$	$1.95^{+3.7}_{-7.4}$
		$2.459^{+0.019}_{-0.018}$		$-1.14^{+1.5}_{-1.3}$	$-0.13^{+4.5}_{-3.9}$

K_{e3} анализ. Результаты.

- Полученные результаты в отличном согласии с предыдущими измерениями.
- f₊ и f_− сравнимы с нулем
- Максимальная статистика.

Заключение

- Эксперимент ОКА успешно набирает статистику в течении нескольких лет (последний сеанс завершился в 15.04.18).
- На части статистики завершены анализы процессов $K^+ \to \mu^+ \nu_H$, $K^+ \to e^+ \nu \pi^0$, $K^+ \to 2\pi^+ \pi^- \gamma$.
- В стадии завершения анализы процессов $K^+ \to \mu^+ \nu \pi^0$, $K^+ \to \mu^+ \nu \gamma$, когерентное рождение системы $K\pi$ на ядрах Al.
- Идет анализ и других распадов.
- В стадии обработки данные последних сеансов (увеличение статистики более чем в 2 раза)
- Осуществляется производство Монте-Карло для всех сеансов
- Все анализы будут заново проведены на увеличенной статистике.