Экспериментальный комплекс TAIGA: статус, результаты, перспективы.

Л.Кузьмичев (НИИЯФ МГУ) от коллаборации TAIGA

Черенковские чтения-2019, 16.04 2019, Москва, ФИАН

Content of report

- 1. Introduction: Astrophysical complex in Tunka Valley
- 2. High energy gamma-ray astronomy and TAIGA project
- 3. TAIGA current status
- 4. The experiment in future

Astrophysical complex in Tunka Valley

Tunka Valley, Republic Buryatia- 50 km to westfrom Lake Baikal.

-High energy cosmic rays and gammaastronomy arrays

- Optical telescope MASTER

All installations in Tunka Valley

- 1. Tunka-133
- 2. Tunka-Grande
- 3. Tunka-REX
- 4. TAIGA-HiSCORe
- 5. TAIGA-IACTS
- 6. TAIGA-MUONs

Cosmic rays with energy $> 10^{15}$ eV

TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma - Astronomy)

The main aim of TAIGA project:

Study of very high energy (>30 TeV) gamma rays from Galactic accelerators with large area array (~10 km²)

Tunka-133 -175 optical detectors on the area of 3 km²

Tunka- Grande – 380 scintillation counters for detection of EAS charged particles

Tunka-REX – 64 antennas for detection of radio signals from EAS

1.High-energy gamma-astronomy and the TAIGA project

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

The main idea: A cost effective approach for construction of large area installation is a joint operation of wide-field-of-view timing Cherenkov detectors (the non-imaging technique) with a few small-size imaging Air Cherenkov Telescopes.

TAIGA - collaboration

Germany

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich)

Italy

Torino University (Torino) **Romania** ISS (Bucharest)

Russia

MSU (SINP) (Moscow) ISU (API) (Irkutsk) INR RAS (Moscow) JINR (Dubna) MEPhI (Moscow) IZMIRAN (Moscow) BINR SB RAS (Novosibirsk) NSU (Novosibirsk) ASU (Barnaul)

Scientific Program

- 1.Study of high-energy edge of spectrum of galactic gamma-ray sources. Search for Pevatrons
- 2. Monitoring of the bright extragalactic sources
- 3.Apply the new hybrid approach (joint operation of IACTs and wide-angle timing array) for study of cosmic rays mass composition in the "knee" region (10¹⁴ -10¹⁶ eV)
- 4. Fundamental physics (photon-axion oscillation, indications of Lorentz invariance violation etc).

Wide angle station

Event example

Energy determination:

 $E = C \cdot Q(200)^{094}$

Common observation of ISS LIDAR by HiSCORE and optical telescope MASTER

Absolute pointing of HiSCORE $~~\alpha_{miss}~~\sim 0.1~^{\circ}$

Camera : 560 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 mm output size aperture single pixel = 0.36° FOV diameter ~ 9.6°

Energy threshold ~1.5 TeV

Selection events from gamma-rays by Hillas parameters

$$Q = K1 / \sqrt{K2}$$
 - Q -factor

Camera of the TAIGA-IACT

2. TAIGA current status

Season 2017-2018

IACT:

S of mirrors 8.5 m^2 Focus 4.75 mFOV 9.5° One pixel 0.36° 560 pixels (in 22 clusters) PSF ~0.1° CCD – for checking telescope pointing direction.

HiSCORE station:

4 PMTs of 8" size with Winston cones (light collection 0.5 m²) FoV ~0.6 sr

CR energy spectrum 2018

Statistics of Hybrid events

Ψ² – распределение для совместных событий

(°)²

IACT and HiSCORE joint events

IACT data

Width for joint events : Experiment & MK

Width < 0.17°

Alfa< 15°

Hadron rejection – 0.01 gamma events - 0.5

Gamma-like events

Ψ – the angle (the direction at the Crab, the shower direction by HiSCORE)

Candidates on Gamma-events

3. The future of experiment

Plan for 2019-20

For 100 hours

3-10⁵ hybrid events (CR mass composition)

50-100 hybrid events from Crab (E ≥.40 TeV)

Mirrors and camera In May 2019

Long term plan for TAIGA

Installation should be placed at 2000 m u.s.l

Wide-angle telescope on SiPMs

HiSCORE and IACT – only 1% of joint events

We need to increase FOV of camera to 60° the same as HiSCORE. The first step, camera with FOV ~ 15°

FOV ~15°

 $S \sim 1 m^2$

Number of pixels ~ 1000-1200 FOV for one pixel ~ 0.4 $^{\circ}$

Energy threshold ~ 10 TeV

What SiPM? Electronic: CITIROC or FADC?

Camera on 49 - SiPMs

Test camera on 49 SiPM SensL MicroFC-60035-SMT

Haw to decrease HiSCORE energy threshold ?

M.Shayduk et al (2015)

 $\Delta\Omega \sim 0.6 \text{ sr} >> 0.03 \text{ (for EAS)}$

100 channel May be another optical system

Background per channel in 100 smaller then Energy threshold in 10 times smaller (5 times for HiSCORE station with 4 PMT)

Conclusion

- 1 TAIGA 10 km² hybrid array 1000 wide-angle stations and 15-20 IACTs). The sensitivity for local sources in the energy range 30 -200 TeV is expected be – 10⁻¹³ TeV cm⁻² sec⁻¹ (for 500 h observation)
- 2. Deployment of the full scale TAIGA prototype -120 wide-angle stations and three IACTs is planned for 2019-2020.
 - The expected sensitivity for 300 hours source observation with this array in the range 30 200 TeV is about 2.5 10⁻¹³ TeV/(cm² sec), extending the energy range of existing and planned experiments to the ultra-high energy range.
- 3. The first commission seasons were successful:
 - CR energy spectrum below the knee
 - Lidar on board ISS light calibration source for TAIGA
 - First results from joint operation of HiSCORE and IACT
- 4. Work has begun on the creation of a new cameras based on SiPM

Thank you

Integral spectra by size for the IACT events and joint events

