Многофункциональный детектор MPD для исследования сильновзаимодействующей материи на коллайдере NICA

В.И. Колесников

ЛФВЭ ОИЯИ (Дубна)

Для MPD Коллаборации

ХІІІ Черенковские чтения "Новые методы в экспериментальной ядерной физике и физике частиц" Москва, ФИАН, 14 апреля 2020 г.

- Комплекс NICA в ОИЯИ
- Программа по тяжелым ионам на детекторе MPD
- Статус проекта (ускорительный комплекс, детектор, результаты моделирования)
- □ Заключение

"NAUKA" NATIONAL PROJECT

Decree of the President of RF № 204 on 7 May, 2018

TIMELINE: 01.10.2018 – 31.12.2024

GOALS AND TARGETS:

- Ensuring the presence of the Russia among the 5 leading countries engaged in R&D in priority areas of science and technology
- development.
- 2. Ensuring the attractiveness of employment in Russia for Russian and foreign leading scientists and distinguished young researchers.
- ^{3.} Advanced increase of internal R&D expenditures using all possible sources in comparison with the growth of the gross domestic product of the country.

FEDERAL PROJECTS INCLUDED IN THE "NAUKA" PROJECT:

Development of the scientific and industrial cooperation.

Development of the advanced infrastructure for R&D in Russia.

Development of the human resources for R&D.

Начало экспериментов на коллайдере NICA – 2022 г.

2022	Beginning of international research at
	Holding of 29th World Mathematical Congress (St. Petersburg)
2021	Establishing 3 world-class research centers for R&D in priority fields of scientific and technological development.
2020	Beginning of international research at the megascience facility of the International Center for Neutron Research (based on the PIK high-flux reactor).
	mathematical centers. Establishing 3 world-class genomic research centers.
	Establishing 4 world-class international

Beginning of international research at the megascience facility "The complex of superconducting rings on colliding heavy ion beams – NICA".

NICA – Nuclotron-based Ion Collider fAcility

- Chain of accelerators providing ion beams (from *p* to Au) for fundamental physics studies & applied research
- Modern detectors for study dense nuclear matter and spin phenomena (MPD, SPD, BM@N)
- Experimental zone with beam lines for fundamental and applied research
- Factory with cryogenic infrastructure for production, testing and supply superconducting elements

NICA accelerator complex: scheme and status

assembly

work in progress

NICA beam intensities and event rates

	Beam intensity (particle / cycle)					
Beam	Current	lon source type	at NICA			
р	3⋅10 ¹⁰	Duoplasmotron	5·10 ¹²			
d	3.10 ¹⁰	,,	5·10 ¹²			
⁴ He	8.10 ⁸	,,	1.10 ¹²			
d↑	2·10 ⁸	SPI	1.10 ¹⁰			
⁷ Li	8.10 ⁸	Laser	5 ⋅ 10 ¹¹			
^{11,10} B	1.10 ⁸	,,				
¹² C	1.10 ⁹	,,	2 ⋅10 ¹¹			
²⁴ Mg	2·10 ⁷	,,				
¹⁴ N	1.10 ⁷	ESIS ("Krion-6T")	5 ⋅10 ¹⁰			
⁴⁰ Ar	1.10 ⁹	,,	2 ⋅10 ¹¹			
⁵⁶ Fe	2.10 ⁶	,,	5 ⋅ 10 ¹⁰			
⁸⁴ Kr	1.10 ⁴	,,	1.10 ⁹			
¹²⁴ Xe	1.10 ⁴	,,	1.10 ⁹			
¹⁹⁷ Au	-					

NICA will provide the largest luminosity in the region of high baryon density (collider mode). Typical event rate - up to 7 kHz Rate (Hz) SIS100 CBM2025 SP\$ NA60+ J-PARC-HI Interaction ۱0⁵ ′ BM@N₂₀₁₉ HIAF CEE ALICE <u>—П</u> sPHENIX HADES NICA MPD 10⁴ NA61/SHINE 44 10³ STAR STAR FXT \mathbf{o} 10² BES-II₂₀₁₉ 10 4 5 6 7 2 100 3 10 20 30 200 Collision Energy $\sqrt{s_{NN}}$ (GeV)

Физ. Программа для MPD детектора.

Scientific pillars of the NICA program

Heavy-ion program

Probing of fundamental laws of physics with heavy-ion collisions:

- Formation of new state of matter (QGP)
- Properties of physical vacuum
- Origin of particle mass

Properties of massive stellar objects (neutron stars)

Spin physics program

New comprehensive studies with polarized beams to:

- Resolve nucleon spin crisis
- New precise measurements of the nucleon Parton Distribution Functions

Program of applied research

- Development of universal charged particle accelerators
- Universality of operating modes & increasing limiting parameters of superconducting magnets
- Radiation hardness and modification of materials
- Radiobiology research with heavy-ion beams

Nuclear matter at NICA energies

- Baryon density in heavy-ion collisions: 3-7ρ₀
- Study of hadroproduction in dense (predominantly baryonic) matter at low NICA energies
- Energy density above the critical value for deconfinement phase transition
 - $(\varepsilon > \varepsilon_{crit} = 0.7 \text{ GeV/fm}^3)$ in central Au+Au at the top energy
- Highest net-baryon density: favors deconfinement and chiral symmetry restoration (CSR)

t (fm/c)

30

20

 ρ/ρ_0

15

10

5

0

Au+Au

 $\sqrt{s} = 4 \text{ GeV}$

U+U

10

Baryon density

NICA/MPD physics program program (White Paper)

Experimental strategy: energy and system size scan to measure a variety of signals systematically changing collision parameters (energy, centrality, system size). Reference data (i.e. p+p) will be taken in the same experimental conditions

Physics targets for the exploration of the QCD phase diagram accessible to NICA and possible observables for a "mixed phase" in the release of the "NICA White Paper" as a Topical Issue of the EPJ A (July 2016).

T.D.Li: "The NICA heavy ion collider will be a very major step towards the formation of a new phase of quarkgluon matter." White Paper Contributions:

111 contributions,188 authors from 70 centers in 24 countries

- Modification of the QCD vacuum at high baryon densities,
- Indication of Chiral Symmetry Restoration
- Deconfinement phase transition and properties of the mixed phase
- QCD phase diagram and search for the Critical End Point
- Bulk properties, nuclear EOS and its hyperon sector

NICA/MPD physics cases: strangeness production

- Excitation function of hadrons, including strangeness (yields, spectra, and ratios)
- Nuclear matter EOS, in-medium effects, and chemical equilibration can be probed
- Hyperons sensitive to early stage and phase transformations in QCD medium
- Non-monotonic strangeness-to-entropy ratio seen in heaviest systems (phase transformation?)

Search for the QCD Critical End Point (CEP) at MPD

Trajectories calculated by a 3-fluid hydrodynamics model Toneev & Ivanov

If the trajectory is in the vicinity of the critical endpoint – abnormal fluctuations can be observed

Observables - event-by-event fluctuations:

- multiplicity, charge number
- particle ratios
- mean pT, azimuthal angle
- baryon number

Searching for the CEP is very important: High Risk, but potentially also High Return !

Experimental challenge: fluctuation signal may be suppressed due to final state interactions that washed out the signal. True CEP signal should show consistency in several observables!

NICA/MPD physics cases: hypernuclei in A+A collisions

- Precise information on Y-N interaction: nuclear EOS, astrophysics
- Hypernuclei ground, excited states and life times: critical assessments or QCD calculations and model predictions
- Production mechanism of bound states with hyperons: coalescence versus spectators-participants interactions

To study hypernuclei, MPD detector must be able to detect and identify light nuclei in a wide rapidity range as well to have a good capability for precise secondary vertex reconstruction

MPD physics: dileptons

Dileptons and photons ideally suited to probe the properties of dense QCD matter:

- $\checkmark\,$ provide time-integrated picture of the collision dynamics
- $\checkmark\,$ penetrating probes no strong interactions in the medium
- $\checkmark\,$ emission is sensitive to the overall fireball lifetime, baryon density and T

- LMR: In-medium modification (resonance melting prior to CSR)
 + thermal radiation from HG
- IMR: QGP thermal radiation
 + heavy-flavor contribution

Конструкция, подсистемы и статус производства

МР детектор.

MultiPurpose Detector for A+A collisions @ NICA

MPD magnet: design & construction status

MPD Solenoid production stages (AGS superconductors, Genova, Italy)							
Field – up to 0.6 T							
Manufacturing	2016 - 2019						
Packaging and Transportation	2020						
Magnet yoke (VHM, Vitkovice, Cech Rep.) – delivered							

Main tracking in MPD: TPC design & construction status

Dimentions: 4m x 3m Rate capability up to 7 kHz Spatial resolution: $\sigma_{r\phi}$ ~300 µm, σ_z ~ 2 mm Momentum resolution: $\Delta p/p < 3\%$ dE/dx resolution: < 8%

TPC fabrication - ongoing

Particle ID in MPD: mRPC TOF system

• σ_{τοF} ~ 80 ps

MPD Electromagnetic calorimeter - ECAL

- Pb+Sc "Shashlyk"
- read-out: WLS fibers + MAPD
- L ~35 cm (~ 11.8 X0)
- Segmentation (4x4 cm2)
- σ(E) better than 5% @ 1 GeV
- time resolution ~500 ps

ECAL - high acceptance & purity e/γ identification:

- good energy resolution
- projective geometry uniform response

Several production sites in China and Russia allow manufacturing all ECAL modules during 2020-2021

Projective geometry

Barrel ~ 37000 modules

MPD Centrality & Event Plane Detector: FHCAL

- Each arm consists of 45 individual modules.
- Module size 150x150x1100cm³ (55 layers)
- Pb(16mm)+Scint.(4mm) sandwich
- 7 longitudinal sections
- 6 WLS-fiber/MAPD per section
- 7 MAPDs/module

Transverse granularity allowing:

- the reaction plane

with the accuracy ~ 30⁰

- All FHCAL modules are ready
- FEE is ready
- Support platform is under construction

MPD Civil Construction status

MPD Hall close to ready for equipment installation

MPD Hall crane weight test

Результаты моделирования для MPD детектора.

- Характеристики по трековосстановлению и идентификации
- Анализ выходов адронов и их отношений
- Перспективы по поиску критической точки
- Дилептоны
- Гипероны и гиперядра

- High tracking efficiency over the reaction phase-space
- Combined (dE/dx+TOF) PID for hadrons provides π/K up to 2 GeV/c and K/p up 3 GeV/c

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from pT=0.2 to 2.5 GeV/c
- Extrapolation to full pT-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for pT-spectra and Gaussian for rapidity distributions)

MPD prospects for the QCD critical end point (CEP) search: net-proton cumulants

Cumulant ratios of net-proton multiplicity distribution are directly compared to susceptibilities, which diverge in the proximity of CEP in central A+A collisions

- Au+Au 5% central (PHSD model)
- Full MPD reconstruction
- Combined dE/dx+TOF particle ID

for (anti)protons: p-pbar=net-protons

Corrections for the MPD inefficiency: A..Bzdak and V. Koch, Phys. Rev. C 86, 044904 (2012)

- MPD detector provides a large midrapidity phase-space
- From 35 to 65 identified p-pbar (Au+Au, |y|<0.5, pT<1.8 GeV/c)
- Event statistics above 1Mevents provides sufficient precision of measurements

 $\frac{k_3}{k_2} = S\sigma \qquad \frac{k_4}{k_2} = K\sigma^2$

MPD prospects for dileptons

Electromagnetic probes ideally suited to probe the properties of dense QCD matter:

Invariant mass of dileptons (background subtracted): red-MC, blue- reco.

MPD SIMULATION RESULTS

- Data set: central Au+Au @ 7 GeV (UrQMD+cocktail)
- PID : dE/dx (from TPC) + TOF + ECAL

Promising results for studying

dileptons at MPD/NICA

Signal-to-Background ratio (0.2<Mi_{e+e-}<1.1) in A+A collisions

Particle	Yields		Decay	BR	Effic. %	Yield/1 w
	4π	y=0	mode			
ρ	31	17	e+e-	4.7 · 10 ⁻⁵	35	7.3 · 10 ⁴
ω	20	11	e+e-	7.1 · 10 -5	35	7.2 · 10 ⁴
φ	2.6	1.2	e+e-	3 · 10 ⁻⁴	35	1.7 · 10 ⁴

Hyperon reconstruction in MPD

- Excitation function of hadrons (yields, spectra, and ratios) \rightarrow EOS and chemical equilibrium be probed
- Hyperons sensitive to early stage and phase transformations in QCD medium \rightarrow lack of data at NICA energies

 Ω^{-}

anti– Ω^+

- 8*M* Au+Au @ 11 GeV (PHSD)
- TPC & TOF, $|\eta| < 1.3$

anti- Λ

Λ

- track reconstruction and PID (dE/dx+TOF)
- secondary vertex finding technique

 Ξ^{-}

Yields for 1 week of running (Stage'1)

PV - primary vertex
V0 - vertex of decay
dca- distance of closest approach
path – decay length

anti-Ξ⁺

MPD Collaboration

33 institutions from 10 countries + JINR, 475 Collaboration members

Conclusions

- NICA complex has a potential for competitive research in the fields of dense baryonic matter, spin physics, applied research and medicine
- The construction of accelerator complex and research infrastructure is progressing close to the schedule
- The international collaboration around the NICA is growing. New partners are invited to join NICA

Thank you for the attention!