

Новые методы в экспериментальной ядерной физике и физике частиц

Москва, ФИАН, 20 апреля 2021 г.

Baikal-GVD neutrino telescope Vladimir Aynutdinov for the Baikal Collaboration 20 April 2021

Baikal-GVD collaboration

10 organisations from 5 countries, ~70 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- EvoLogics (Berlin, Germany)
- Comenius University (Bratislava, Slovakia)
- Krakow Institue for Nuclear Research (Krakow, Poland)

Neutrino telescopes

Detection modes:

Cascades: $v_e : v_\mu : v_\tau - 4\pi$. Tracks: $v_\mu - 2\pi$ - bottom hemisphere.

Background:

Atmospheric μ - top hemisphere Atmospheric ν - bottom hemisphere

Baikal-GVD site

Telescope is located ~4 km away from shore Constant lake depth: 1366 - 1367 m.

Stable ice cover for 6-8 weeks in February – April: detector deployment and maintenance.

Good water properties: Absorption length: ~ 22-24 m Scattering length: ~ 30-50 m

Moderately low background 15-40 kHz: PMT R7081-100 Ø10"

Absence of high luminosity burst from biology and K⁴⁰ background.

Baikal-GVD optical module

PMT R7081-100 Hamamatsu Ø 10", max QE 36%, TTS =3.4 ns Optical module: OM

Baikal-GVD detector layout

String

- 3 Sections, 36 Oms
- String control module
- 15 m step between OMs
- All OMs look downward
- Acoustic and LED calibration devices
- Anchored at the lake bottom

Cluster

- 8 strings, 288 OMs
- Cluster DAQ center
- Shore cable
- Depths from 750 to 1275 m
- 60 m step between strings
- Hardware global trigger:
 4.5 p.e. + 1.5 p.e.
 on adjacent OMs in 100 ns.

Calibration devices

Amplitude calibration:

ADC cannel \rightarrow photoelectrons

Time calibration:

Cable and PMT delays correction

- Section calibration: OM LEDs
- String calibration: LED beacons -
- **Cluster calibration: Laser** _

LED beacons for string time calibration

2 vertical and 10 horizontal LEDs (installed in to OM)

Acoustic positioning system

OM drift can reach tens of meters, depends on season and elevation.

OM coordinates are acquired via an acoustic positioning system.

It consists of a network of acoustic modems (AMs) installed along GVD strings

4 AMs per string in a standard configuration.

OM coordinates are obtained by interpolating AM coordinates, error < 0.2m,

Deploying the installation Expedition 2021: 15 February – 9 April

Ice camp and stages of the strings deployment

Laying of the shore cable

- Separate cable for each cluster
 - 5 7 km length; optical fibers and copper wires
- The cable connects the shore and the cluster center
- Laying two cables during the expedition.

Bathymetry

Ultrasonic scanning, 7 clusters, 2020 yr.

Status 2020 – 7 clusters

300 m step between clusters

Deployment schedule

Effective volume 2021: 0.40 km³

Preliminary resalts

Muons detection mode: upward going neutrinos

➤ Cascades detection mode: HE cascades

MultiMessenger studies

Track analysis

Fit track with quality function

$$Q = \chi^2(t) + f(q,r)$$

Neutrino selection:

- cut on zenith angle
- cut on fit quality

Fair agreement with MC predictions Neutrino selection works as expected

A likelihood-based reconstruction is in development

Muon neutrino : single-cluster analysis

- Data taken between Apr 1 and Jun 30, 2019
- Live time: 323 days (single-cluster equivalent live time)

Fair agreement with MC prediction for atmospheric neutrino

Angular resolution: (single cluster) ~ 1° or better

Muon neutrino candidates

Multi cluster events

Multi-cluster analysis is in preparation Cluster synchronization accuracy < 5 ns Expected angular resolution (track mode): 0.1 ... 0.2°

Preliminary

Cascades detection with GVD Cluster

Data sample

T = 3714 days (10.1 years) of one Cluster operation (2018, 2019, 2020)

After reconstruction and all cuts applying, 9357 events have been selected with $N_{hit} > 9 \& E > 10 \text{ TeV}$

Trigger conditions for different studies Multi-Messenger studies: $N_{hit} > 9$ Upward going neutrinos: $N_{hit} > 10 \& \theta > 90^{\circ}$ HE astrophys. neutrinos: $N_{hit} > 19 \& E > 100 \text{ TeV}$

High energy cascades (data)

Energy distribution

The first clear cascade event from the interaction of an upward moving electron- or tau-neutrino at the 100 TeV

Preliminary

Contained event Reconstructed energy E = (91 ± 11) TeV Zenith angle $\theta_z = 109^\circ$

First PeV_scale cascade

Preliminary

Reconstructed energy E = 955 TeV (\pm 20%); distance from central string r = 91 m; zenith angle = 61°

Baikal GVD: Multi-Messenger Studies

ANTARES (TAToO) μ_{\uparrow} since Dec 2018 <E> 7 TeV ICECUBE (GCN) μ_{\uparrow} since Sept 2020 E > 100 TeV

- in cascade mode within 4.5° half-open cone towards sources over 4π-sky
- in track mode: within 1.5° half-open cone towards sources in down hemisphere

No prompt coincidence in time and direction was found

LIGO/Virgo: GW170817

No neutrino events associated with GW170817 have been observed using cascade mode within \pm 500 sec window and 14 days after the neutron star merger.

Fiber optic data acquisition system for GVD

Development of fiber-optic DAQ is focused on GVD step 2.

The goal of upgrading the DAQ is to reduce the event registration threshold by increasing the data transfer speed and implementing a smart trigger system.

Basic requirements :

per one fiber)

- "One fiber per one string".
- "Common clock" for all sections and clusters
- "Multi-trigger" operation mode

To meet these requirements CWDM optical multiplexers are applied (up to 9 channels

Experimental string with optical DAQ

Experimental string – 2021

- 3 sections: 36 OMs
- String module
- Optical DAQ center

Basic elements of the optical communication is CWDM multiplexors (MUX) that provided up to 9 physical line for 1 fiber using different wavelengths.

Present DAQ	Optical DAQ
Bandwidth of the string channel 6 Mbit. Threshold 1.5/4 pe	Bandwidth of the string channel 1 Gbit. Threshold < 0.3/1.5 pe
Synchronization only using common trigger	Synchronization using as common trigger and section clocks.
One universal trigger for all sorts of events.	Multitrigger mode and local triggers of the sections.

Conclusion

- Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere: 0.40 km³ and growing
- Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.

> Observations of atmospheric neutrinos by Baikal-GVD agree with expectations; first astrophysics neutrino candidate events have been selected

СПАСИБО ЗА ВНИМАНИЕ