Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды

Дважды тяжёлые барионы: теория и перспективы экспериментальных исследований Черенковские чтения 2021, Москва

А. Бережной¹, А. Лиходед², А. Лучинский²

¹НИИЯФ МГУ, ²ИФВЭ

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды

Содержание

1 Введение

3 Рождение

4 Времена жизни

5 Эксклюзивные распады

6 Выводы

🕜 Дополнительные слайды

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайд -0

Кратко о дважды тяжёлых барионах

- Состоят из двух тяжёлых и одного лёгкого кварка: $(Q_1 Q_2 q)$.
- Работают несколько шкал:

$$m_Q \gg m_{Q_1} \cdot v, m_{Q_2} \cdot v \gg m_{Q_1} v^2, m_{Q_2} v^2 \gg \Lambda_{\rm QCD}$$

(v.s. $m_Q \gg \Lambda_{
m QCD}$ от обычных тяжёлых барионов).

- При m_Q → ∞, лёгкий кварк "видит" тяжёлый дикварк как локальный источник глюонного поля.
- Возможно вычисление в два этапа:

3_с дикварк + кварк-дикварковая система

Спин дикварка — хорошее квантовое число. •

Альтернативный путь: решение квантовой проблемы трёх тел (см например [Albertus et al., 2007a, Albertus et al., 2007b] и гораздо более раннюю работу [Kerbikov et al., 1990]).

Шкалы Ξ_{bc} :

Комптоновский размер тяжёлого кварка $\lambda_{O} = 1/m_{O}$, размер дикварка $r_{bc} \sim 1/(v \cdot m_Q)$ и шкала́ конфаймента $r_{QCD}=1/\Lambda_{QCD}$ выстроены следующим образом: $\lambda_b \approx \frac{1}{3} \lambda_c \approx \frac{1}{9} r_{bc} \approx \frac{1}{27} r_{QCD}$ [Kiselev and Likhoded, 2002a]

Macca [Aaij et al., 2017b]:

$$m_{\Xi_{cc}^{++}} = 3621.40 \pm 0.72 ({\rm stat}) \pm 0.27 ({\rm syst} \pm 0.14 \, (\Lambda_c^+) \, {\rm MeV}/c^2$$

Подтверждено в моде $\Xi_{cc}^{++} o \Xi_{c}^{+} \pi^{+}$ [Aaij et al., 2018a]

Время жизни также измерено [Aaij et al., 2018b]:

$$\tau_{\Xi_{cc}^{++}} = 0.256 \frac{+0.024}{-0.022} \text{ (stat)} \pm 0.014 \text{ (syst) ps}$$

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды
	•0000					

Спектроскопия

Мы предполагаем, что лёгкий кварк взаимодействует с тяжёлым

дикварком (а не с тяжёлыми кварками по отдельности):

Тождество кварка упрощает спектр:

- S-волна и D-волновое состояние дикварка QQ:
 $S_{QQ} = 1$
- P-волновое состояние: $S_{QQ} = 0$

Спектр Ξ_{bb} [Gershtein et al., 1999a]:

См. также [Flynn et al., 2003, Brambilla et al., 2005].

Для получения спектра семейства дважды тяжёлых барионов нужно

- получить спектр дикварка по аналогии с тяжелым кварконием.
- для дикварка, состоящего из эквивалентных кварков, выбирать антисимметричные волновые функции.
- получить спектр системы дикварк лёгкий кварк по аналогии с тяжёлым-лёгким мезоном.
- оценить смешивание состояний с одинаковыми квантовыми числами.

Предсказания для масс Ξ_{cc}^{++} и Ξ_{cc}^{+}

$(n_d L_d n_l L_l), J^P$	mass, GeV	$(n_d L_d n_l L_l), J^P$	mass, GeV
(1S 1s)1/2 ⁺	3.478	(3P 1s)1/2 ⁻	3.972
(1S 1s)3/2 ⁺	3.61	(3D 1s)3/2'+	4.007
(2P 1s)1/2 ⁻	3.702	(1S 2p)3/2'-	4.034
(3D 1s)5/2 ⁺	3.781	(1S 2p)3/2 ⁻	4.039
(2S 1s)1/2 ⁺	3.812	(1S 2p)5/2 ⁻	4.047
(3D 1s)3/2 ⁺	3.83	(3D 1s)5/2'+	4.05
(2P 1s)3/2 ⁻	3.834	(1S 2p)1/2'-	4.052
(3D 1s)1/2 ⁺	3.875	(3S 1s)1/2 ⁺	4.072
(1S 2p)1/2 ⁻	3.927	(3D 1s)7/2 ⁺	4.089
(2S 1s)3/2 ⁺	3.944	(3P 1s)3/2 ⁻	4.104

 $\Xi_{cc}(\text{2P 1s})$ является метастабильным, поскольку переход в основное состояние требует одновременного изменения углового момента и полного спина дикварка. Так что, может, стоит обратить внимание на распад $\Xi_{cc}^+(\text{2P 1s}) \to \Xi_{cc}^{++} \pi^-.$

Поправки к массам из-за конечного размера дикварка

Учёт конечного размера дикварка увеличивает массы дважды тяжёлых барионов.

В приближении точечного дикварка

$$m[\Xi_{cc}^{1/2^{++}}] \approx m[\Xi_{cc}^{1/2^{+}}] = 3478 \pm 30$$
 MeV,

и

$$m[\Xi_{cc}^{3/2^{++}}] \approx m[\Xi_{cc}^{3/2^{+}}] = 3610 \pm 30$$
 MeV.

Однако реальными размерами дважды очарованных дикварков пренебречь нельзя. Как обнаруж ено в [Gershtein et al., 2000, Gershtein et al., 1999b], размеры базовых векторных 1S-дикварков:

$$\langle r^2 \rangle_{cc}^{/2} = 0.58 \text{ fm}$$

$$\langle r^2 \rangle_{bb}^{/2} = 0.33 \text{ fm}$$

Учёт размера дикварка в рамках двух различных подходов увеличивает значения массы:

форм фактор: δM(Ξ_{cc}) ≈ 80 МэВ [Ebert et al., 2002];

• Учёт движения в модели кварк-глюонных струн $\delta M(\Xi_{cc}) \approx 80$ МэВ [Kiselev et al., 2017]. Therefore:

$$m[\Xi_{cc}^{1/2^{++}}] \approx m[\Xi_{cc}^{1/2^{+}}] = 3615 \pm 55$$
 МэВ,

$$m[\Xi_{cc}^{3/2++}] \approx m[\Xi_{cc}^{3/2+}] = 3747 \pm 55 \text{ M}_{\text{P}}\text{B}_{cc}$$

Учёт форм-фактора

Предсказания для спектра Ξ_{cc} барионов в ГэВ.					
Состояние	Mae	сса	Состояние	Mad	cca
$(n_d L n_q l) J^P$	EFGM	our	$(n_d L n_q l) J^P$	EFGM	our
$(1S1s)1/2^+$	3.620	3.478	$(1P1s)1/2^{-}$	3.838	3.702
$(1S1s)3/2^+$	3.727	3.61	$(1P1s)3/2^{-}$	3.959	3.834
$(1S1p)1/2^{-}$	4.053	3.927	$(2S1s)1/2^+$	3.910	3.812
$(1S1p)3/2^{-}$	4.101	4.039	$(2S1s)3/2^+$	4.027	3.944
$(1S1p)1/2'^{-}$	4.136	4.052	$(2P1s)1/2^{-}$	4.085	3.972
$(1S1p)5/2^{-}$	4.155	4.047	$(2P1s)3/2^{-}$	4.197	4.104
$(1S1p)3/2'^{-}$	4.196	4.034	$(3S1s)1/2^+$	4.154	4.072

EFGM: D. Ebert, R. N. Faustov, V. O. Galkin, A. P. Martynenko [Ebert et al., 2002]

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди оо

Решение трёхчастичной задачи

C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco [Albertus et al., 2007a, Albertus et al., 2007b]

Массы основных состояний в ГэВ

Ξ_{cc}	$3612^{\pm 1}$
Ξ_{cc}^{*}	3706^{+23}
Ξ_{bb}	10197^{+10}_{-17}
Ξ_{bb}^{*}	10236^{+9}_{-17}
Ξ_{bc}	6919^{+17}_{-7}
Ξ_{bc}'	6948^{+17}_{-6}
Ξ_{bc}^*	6986^{+14}_{-5}

Гораздо более ранняя работа Б. Кебрикова,

М. Поликарпова и

Л. Шевченко [Kerbikov et al., 1990]

Masses of centers of gravity $M_{cong.}$ and the expectation values δ_{ij} and $\langle r_{ij}^2 \rangle^{1/2}$ for baryons

System	M _{c.o.g.} (MeV)	$10^3 \delta_{ij} (\text{GeV}^3)$	$\langle r_{ij}^2 \rangle^{1/2}$ (GeV ⁻¹)
udu	1087.8 ± 0.3	$\delta_{12} = \delta_{13} = \delta_{23}$	$\langle r_{12}^2 \rangle^{1/2} = \langle r_{13}^2 \rangle^{1/2}$
		$= 4.98 \pm 0.61$	$= \langle r_{23}^2 \rangle^{1/2} = 4.480 \pm 0.009$
uds	1271.7 ± 0.4	$\delta_{12} = 4.07 \pm 0.41$	$\langle r_{12}^2 \rangle^{1/2} = 4.421 \pm 0.014$
		$\delta_{13} = \delta_{23}$	$\langle r_{13}^2 \rangle^{1/2} = \langle r_{23}^2 \rangle^{1/2}$
		$= 6.85 \pm 0.72$	$= 4.087 \pm 0.019$
udc	2413.9 ± 1.3	$\delta_{12} = 5.24 \pm 0.85$	$\langle r_{12}^2 \rangle^{1/2} = 4.295 \pm 0.024$
		$\delta_{13} = \delta_{23}$	$\langle r_{11}^2 \rangle^{1/2} = \langle r_{21}^2 \rangle^{1/2}$
		$= 8.51 \pm 1.10$	$= 3.631 \pm 0.037$
udb	5768.7 ± 2.0	$\delta_{12} = 5.21 \pm 1.03$	$(r_{2}^{2})^{1/2} = 4.269 \pm 0.042$
		$\delta_{11} = \delta_{21}$	$(r_{12}^2)^{1/2} = (r_{12}^2)^{1/2}$
		$= 12.22 \pm 1.21$	$= 3.461 \pm 0.039$
usc	2562.2 ± 1.7	$\delta_{12} = 7.49 \pm 1.08$	$\langle r_{12}^2 \rangle^{1/2} = 3.935 \pm 0.036$
		$\delta_{13} = 9.87 \pm 1.44$	$\langle r_{13}^2 \rangle^{1/2} = 3.582 \pm 0.021$
		$\delta_{23} = 17.99 \pm 1.99$	$\langle r_{23}^2 \rangle^{1/2} = 3.072 \pm 0.021$
555	1604.9 ± 1.3	$\delta_{12} = \delta_{13} = \delta_{23}$	$\langle r_{12}^2 \rangle^{1/2} = \langle r_{13}^2 \rangle^{1/2}$
		$= 9.91 \pm 0.89$	$(r_{23}^2)^{1/2} = 3.557 \pm 0.026$
ssu	1444.9 ± 0.7	$\delta_{12} = 9.97 \pm 0.85$	$\langle r_{12}^2 \rangle^{1/2} = 3.587 \pm 0.020$
		$\delta_{13} = \delta_{23}$	$\langle r_{11}^2 \rangle^{1/2} = \langle r_{21}^2 \rangle^{1/2}$
		$= 6.34 \pm 0.80$	= 3.996 ± 0.033
SSC	2704.8 ± 1.8	$\delta_{12} = 10.88 \pm 1.28$	$(r_{13}^2)^{1/2} = 3.458 \pm 0.033$
		$\delta_{11} = \delta_{21}$	$(r_{13}^2)^{1/2} = (r_{23}^2)^{1/2}$
		$= 17.66 \pm 1.61$	= 2.996 ± 0.030
ssb	6040.9 ± 2.4	$\delta_{12} = 11.51 \pm 1.58$	$\langle r_{12}^2 \rangle^{1/2} = 3.367 \pm 0.020$
		$\delta_{13} = \delta_{23}$	$\langle r_{13}^2 \rangle^{1/2} = \langle r_{23}^2 \rangle^{1/2}$
		$= 24.16 \pm 2.40$	$= 2.770 \pm 0.026$
ccc	4776.1 ± 6.2	$\delta_{12} = \delta_{13} = \delta_{23}$	$\langle r_{12}^2 \rangle^{1/2} = \langle r_{13}^2 \rangle^{1/2}$
		$= 63.47 \pm 8.60$	$= \langle r_{23}^2 \rangle^{1/2} = 2.118 \pm 0.034$
ccu	3632.8 ± 2.4	$\delta_{12} = 45.25 \pm 2.90$	$\langle r_{12}^2 \rangle = 2.322 \pm 0.024$
		$\delta_{13} = \delta_{23}$	$\langle r_{13}^2 \rangle^{1/2} = \langle r_{23}^2 \rangle^{1/2}$
		$= 11.28 \pm 1.94$	$= 3.407 \pm 0.035$
ccs	3760.7 ± 2.4	$\delta_{12} = 50.30 \pm 2.53$	$\langle r_{12}^2 \rangle^{1/2} = 2.238 \pm 0.044$
		$\delta_{13} = \delta_{23}$	$\langle r_{13}^2 \rangle^{1/2} = \langle r_{23}^2 \rangle^{1/2}$
		$= 18.63 \pm 1.22$	$= 2.842 \pm 0.030$

9/ 38

Рождение дважды тяжёлых барионов

Два этапа:

- Рождение дважды тяжёлого дикварка.
- Его трансформация в барион.

Всё аналогично рождению дважды тяжёлых кваркониев J/ψ или B_c :

 $(Q_1\bar{Q}_2)_{1_c} \Rightarrow [Q_1Q_2]_{\bar{3}_c}$

$$|R_{1_c}(0)|^2 \Rightarrow |R_{\bar{3}_c}(0)|^2$$

Кварки в состоянии $\bar{3}_c$ притягиваются и

$$|R(0)_{\bar{3}_c}^{Q_1Q_2}|^2 \approx \frac{|R(0)_{1_c}^{Q_1\bar{Q}_2}|^2}{3}$$

Иногда в качестве "заготовки" используют дикварк $[QQ]_{6_{\rm C}}.$

"выглядит" как тяжёлый антикварк, и, следовательно, можно фрагментировать его в барион:

$$[QQ]_{\bar{3}_c}(\vec{p}) \xrightarrow{D(z)dz} H(z\vec{p})$$

Проблемы:

- Почему $[Q_1Q_2]_{\bar{3}_c}$ не распадется на мезоны?
- Какова вероятность для $[Q_1Q_2]_{\bar{3}_c}$ образовать дважды тяжёлый барион?
- Какова форма функции фрагментации $[Q_1Q_2]_{\bar{3}_c} \to (Q_1Q_2q)?$

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Амплитуда рождения $Q_1 Q_2$ -дикварка

$$A^{SJj_{Z}} = \int T^{Ss_{Z}}_{Q_{1}\bar{Q}_{1}Q_{2}\bar{Q}_{2}}(p_{i}, k(\vec{q})) \cdot \left(\Psi^{Ll_{Z}}_{[Q_{1}Q_{2}]_{\bar{3}_{c}}}(\vec{q})\right)^{*} \cdot C^{Jj_{Z}}_{s_{z}l_{z}} \frac{d^{3}\vec{q}}{(2\pi)^{3}},$$

где $T_{Q_1\bar{Q}_1\bar{Q}_2\bar{Q}_2}^{Ss_z}$ — амплитуда жесткого рождения двух пар тяжелых кварков; $\Psi_{[Q_1Q_2]\bar{3}_c}^{Ll_z}$ — волновая функция дикварка (цветной антитриплет); J и j_z — полный угловой момент и его проекция на ось z в системе покоя $[Q_1Q_2]_{\bar{3}_c}$; L и l_z — орбитальный угловой момент bc-дикварка и его проекция на ось z; S и s_z — спин Q_1Q_2 -дикварка и его проекция; $C_{s_zl_z}^{Jj_z}$ — коэффициенты Клебша-Гордона; p_i — четырёхимпульса дикварка в системе покоя Q_1Q_2 дикварка (т.е. где $(0,\vec{q})=k(\vec{q})$). Если $T_{b\bar{b}c\bar{c}}^{Ss_z}$ мало зависит от $k(\vec{q})$ то:

$$A \sim \int d^3 q \Psi^*(\vec{q}) \left\{ T(p_i, \vec{q}) \big|_{\vec{q}=0} + \vec{q} \frac{\partial}{\partial \vec{q}} T(p_i, \vec{q}) \big|_{\vec{q}=0} + \cdots \right\}$$

в частности, S-волновых состояний

$$A \sim R_S(0) \cdot T_{Q_1 \bar{Q}_1 Q_2 \bar{Q}_2}(p_i) \big|_{\vec{q}=0},$$

где $R_S(0)$ — радиальная волновая функция в нуле.

Фрагментация в дикварк

Фрагментация хорошо работает для e^+e^- -аннигиляции при $4m_c^2/s\ll 1$:

 $Q(\vec{p}) \xrightarrow{D(z)dz} [QQ]_{\bar{\mathbf{3}}_c}(z\vec{p})$

$$D_{c \to cc}(z) = \frac{2}{9\pi} \frac{|R_{cc}(0)|^2}{m_c^3} \times \\ \times \alpha_s^2(4m_c^2) \frac{z(1-z)^2}{(2-z)^6} (16-32z+72z^2-32z^3+5z^4),$$

В точности то же самое, что для $c
ightarrow J/\psi + c.$ [Falk et al., 1994]

 $D_{c \to cc}(z)$ выглядит как ф.ф. Петерсона:

Введение Опектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Рождение *cc*-дикварка в адронных взаимодействиях

 $d\sigma(gg
ightarrow [cc]_{ar{3}_{c}} + X)/dp_{T}$, $\sqrt{s_{gg}} = 100$ ГэВ, пбн/ГэВ

Гистограмма: полный набор диаграмм Кривая: фрагментациооное приближение

Рождение Ξ_{bc} в адронных взаимодействиях

Предсказания для LHCb ($|R_{B_c}(0)|^2 = |R_{[bc]_{\overline{2}}}(0)|^2$)

модель	$ R_{[bc]_{\bar{3}}}(0) ^2/ R_{B_c}(0) ^2$
Buchmüller-Tye potential [Kiselev and Likhoded, 2002a Gershtein et al., 1997]	a, 0.31
RM I [Ebert et al., 2003, Ebert et al., 2002]	0.26
RM II [Ebert et al., 2011], [Galkin, private communi- cation]	0.32

$$\frac{\sigma_{\Xi_{bc}}}{\sigma_{B_{c}}} \approx \frac{|R_{[bc]_{\bar{3}}}(0)|^{2}}{|R_{B_{c}}(0)|^{2}} \approx \frac{1}{3}$$

Для Ξ_{cc} и $J/\psi+c$ это не так из-за большого вклада DPS в $J/\psi+c:$

 $\sigma_{\Xi_{cc}} \ll \sigma_{J/\psi+c}$

[Baranov, 1997, Berezhnoy et al., 1996, Berezhnoy et al., 1998, Chang et al., 2006, Chang et al., 2007, Zhang et al., 2011, Chen et al., 2014]

Времена жизни дважды тяжёлых барионов

Weak scattering

Pauli interference

Спектаторный межанизм не доминирует.

мода или распадный механизм	ширина, ps^{-1}	вклад, $\%~(\Xi_{cc}^{++})$	вклад, $\%~(\Xi_{cc}^+)$
$c \rightarrow sdu$	2.648	127	31
$c \rightarrow se^+\nu$	0.380	18	4.2
PI	-1.317	-63	-
WS	5.254	-	60.6
$\Gamma_{\Xi_{cc}^{++}}$	2.089	100	-
$\Gamma_{\Xi_{cc}^+}$	8.660	-	100

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде оо оосоо осоо ос

Почему времена жизни очень важны

Время жизни сильно зависит от состава бариона (40-50%).

$$m_c = 1.73 \pm 0.07$$
, $m_s = 0.35 \pm 0.2$.

baryon	au, ps	baryon	au, ps	baryon	au, ps
Ξ_{cc}^{++}	0.26 ± 0.03	Ξ_{bc}^+	0.24 ± 0.02	Ξ_{bb}^0	0.52 ± 0.01
Ξ_{cc}^+	0.14 ± 0.01	Ξ_{bc}^{0}	0.22 ± 0.02	Ξ_{bb}^{-}	0.53 ± 0.01
Ω_{cc}^+	0.19 ± 0.02	Ω_{bc}^{0}	0.18 ± 0.01	Ω_{bb}^{-}	0.53 ± 0.01

Измерения времён жизни дважды тяжелых барионов станут серьёзной проверкой ОРЕ.

Примеры эксклюзивных распадов

Оценки из работы [Gershtein et al., 1999a]

Mode	Br (%)	Mode	Br (%)
$\Xi_{bb}^{\diamond} \rightarrow \Xi_{bc}^{\diamond} l \bar{\nu}_l$	14.9	$\Xi_{bc}^+ \rightarrow \Xi_{cc}^{++} l \bar{\nu}_l$	4.9
$\Xi_{bc}^0 \to \Xi_{cc}^+ l \bar{\nu}_l$	4.6	$\Xi_{bc}^+ \to \Xi_b^0 \bar{l} \nu_l$	4.4
$\Xi_{bc}^{0} \rightarrow \Xi_{b}^{-} \bar{l} \nu_{l}$	4.1	$\Xi_{cc}^{++} \to \Xi_c^+ \bar{l} \nu_l$	16.8
$\Xi_{cc}^+ \rightarrow \Xi_c^0 \bar{l} \nu_l$	7.5	$\Xi_{bb}^{\diamond} \rightarrow \Xi_{bc}^{\diamond} \pi^{-}$	2.2
$\Xi_{bb}^{\diamond} \to \Xi_{bc}^{\diamond} \rho^-$	5.7	$\Xi_{bc}^+ \rightarrow \Xi_{cc}^{++} \pi^-$	0.7
$\Xi_{bc}^{0} \rightarrow \Xi_{cc}^{+}\pi^{-}$	0.7	$\Xi_{bc}^+ \rightarrow \Xi_{cc}^{++} \rho^-$	1.9
$\Xi_{bc}^0 \to \Xi_{cc}^+ \rho^-$	1.7	$\Xi_{bc}^+ \to \Xi_b^0 \pi^+$	7.7
$\Xi_{bc}^{0} \rightarrow \Xi_{b}^{-}\pi^{+}$	7.1	$\Xi_{bc}^+ \rightarrow \Xi_b^0 \rho^+$	21.7
$\Xi_{bc}^0 \rightarrow \Xi_b^- \rho^+$	20.1	$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$	15.7
$\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+$	11.2	$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \rho^{+}$	46.8
$\Xi_{cc}^+ \rightarrow \Xi_c^0 \rho^+$	33.6		

Найти "золотую моду" для дважды тяжелых барионов очень сложно.

Ожидаемый выход для некоторых мод для LHCb (Run I + 2015 +2016) для Ξ_{bc} [Blusk, 2017]:

- $N(\Xi_{bc}^+ \to J/\psi \Xi_c^+) \sim 12$
- $N(\Xi_{bc}^+ \to D^0 \Lambda_c^+) \sim 7$

Возможно, Ξ_{bc} всё же будет открыт на Run III.

		et lenns h etheethesbible bakedbi co Hindapheb (Beshterbe dy)indin hb [Ebert et al.; 2002]).								
	состояние	волновая функция	масса дикварка	относительный выход	сечение					
1		<i>R</i> (0) , ГэВ ^{3/2}	<i>m</i> , ГэВ	r*,%	σ , нбн					
	1S	0.566	3.20	$49 \div 52$	$120 \div 170$					
l	2S	0.540	3.50	$26 \div 27$	$60 \div 90$					
	3S	0.542	3.70	$18 \div 20$	$40 \div 70$					
		<i>R</i> ′(0) , ГэВ ^{5/2}	<i>m</i> , ГэВ	r, %	σ , нбн					
	1P	0.149	3.40	2	$4 \div 6$					
	2P	0.198	3.70	$1 \div 2$	$4 \div 5$					

Сечения и относительные выходы *cc*-дикварков (Волновые функции из [Ebert et al., 2002]).

Сечения и относительные выходы bb-дикварков (Волновые функции из [Ebert et al., 2002]).

состояние	волновая функция	масса дикварка	относительный выход	сечение
	<i>R</i> (0) , ГэВ ^{3/2}	<i>m</i> , ГэВ	r*,%	σ , пбн
1S	1.107	9.8	$36 \div 37$	$320 \div 670$
2S	0.969	10.0	$24 \div 25$	$210 \div 450$
3S	0.927	10.2	$19 \div 20$	$170 \div 360$
4S	0.906	10.3	$17 \div 18$	$150 \div 320$
	<i>R</i> ′(0) , ГэВ ^{5/2}	<i>т</i> , ГэВ	r, %	σ , пбн
1P	0.387	9.9	0.3	$3 \div 6$
2P	0.484	10.1	0.4	$4 \div 8$
3P	0.551	10.3	0.5	$4 \div 9$
4P	0.605	10.4	0.5	$4 \div 9$

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайд

$$\begin{split} N_{tot} \sim N_{direct}(\Xi_{cc}^{++}) + \frac{1}{3}N(\Xi_{cc}^{*++}) [\to \Xi_{cc}^{++}\pi^0] + \\ &+ \frac{2}{3}N(\Xi_{cc}^{*+}) [\to \Xi_{cc}^{++}\pi^-] + \frac{1}{2} \cdot \frac{1}{2}N(\Omega_{cc}^{*+}) [\to \Xi_{cc}^{++}K^-]. \\ &u: d: s = 1: 1: 0.26 \end{split}$$

Из $N_{tot} \approx 300$ около 90 являются продуктами распада Ξ_{cc}^{*+} , около 45 — продукты распада Ξ_{cc}^{*++} , около 10 — продукты распада Ω_{cc}^{*+} .

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды
00	00000	00000	00	000	●0	000000000000000000000000000000000000
Выво	ды					

- Существует два основных подхода к предсказанию масс дважды тяжёлых барионов: модели кварк-дикваркового потенциала и трехчастичная модель с парными потенциалами. Оба подхода успешно предсказали массу основного состояния Ξ_{cc} . Кварк-дикварковые модели позволяют также получить полный спектр частиц, включая сильные возбуждения.
- Было бы очень интересно сравнить времена жизни Ξ_{cc}^{++} and Ξ_{cc}^{+} , потому что это было бы серьёзным тестом OPE.
- Сечение рождения Ξ_{bc} должно быть сопоставимо с сечением рождения B_c -мезона. Поэтому мы надеемся, что барион Ξ_{bc} -барион также будет наблюдаться в экспериментах на LHC.
- Вполне возможно, что возбуждённые состояния дважды очарованных барионов также будут обнаружены.

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды
					00	

Спасибо за внимание!

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды
						•000000000000000

Дополнительные слайды

Comparison of predictions for different ground states of DHB from [Albertus et al., 2007b] (I)

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайд

Reference	Ξ_{cc}	Ξ_{cc}^{*}	Ξ_{bb}	Ξ_{bb}^{*}
[Albertus et al., 2007b]	3612^{+17}	3706^{+23}	10197^{+10}_{-17}	10236^{+9}_{-17}
[Ebert et al., 2002]	3620	3727	10202	10237
[Kiselev and Likhoded, 2002a]	3480	3610	10090	10130
[Narodetskii and Trusov, 2002b]	3690		10160	
[Tong et al., 2000]	3740	3860	10300	10340
[Itoh et al., 2000]	3646	3733		
[Vijande et al., 2004]	3524	3548		
[Gershtein et al., 2000]	3478	3610	10093	10133
[Ebert et al., 1997]	3660	3810	10230	10280
[Roncaglia et al., 1995a, Roncaglia et al., 1995b]	3660 ± 70	3740 ± 80	10340 ± 100	
[Korner et al., 1994]	3610	3680		
[Mathur et al., 2002]	3588 ± 72			

Reference	Ξ_{bc}	Ξ'_{bc}	Ξ_{bc}^{*}
[Albertus et al., 2007b]	6919^{+17}_{-7}	6948^{+17}_{-6}	6986^{+14}_{-5}
[Silvestre-Brac, 1996b]	6915_{-9}^{+17}		
[Ebert et al., 2002]	6933	6963	6980
[Kiselev and Likhoded, 2002a]	6820	6850	6900
[Narodetskii and Trusov, 2002b]	6960		
[Tong et al., 2000]	7010	7070	7100
[Gershtein et al., 2000]	6820	6850	6900
[Ebert et al., 1997]	6950	7000	7020
[Roncaglia et al., 1995a, Roncaglia et al., 1995b]	6965 ± 90	7065 ± 90	7060 ± 90
[Mathur et al., 2002]	6840 ± 236		

Comparison of predictions for $M(\Xi_{cc})$ from [Karliner and Rosner, 2014] (I)

Reference	Value (MeV)	Method
[Karliner and Rosner, 2014]	3627 ± 12	
[De Rujula et al., 1975]	3550 - 3760	QCD-motivated quark model
J. Bjorken (unpublished draft, 1986)	3668 ± 62	QCD-motivated quark model
[Anikeev et al., 2001]	3651	QCD-motivated quark model
[Fleck and Richard, 1989]	3613	Potential and bag models
[Richard, 1994]	3630	Potential model
[Korner et al., 1994]	3610	Heavy quark effective theory
[Roncaglia et al., 1995b]	3660 ± 70	Feynman-Hellmann + semi-empirical
[Lichtenberg et al., 1996]	3676	Mass sum rules
[Ebert et al., 1997]	3660	Relativistic quasipotential quark model
[Silvestre-Brac, 1996a]	3607	Three-body Faddeev equations.
[Gerasyuta and Ivanov, 1999]	3527	Bootstrap quark model + Faddeev eqs.
[Itoh et al., 2000]	<i>ucc</i> : 3649 ± 12 ,	
	$dcc: 3644 \pm 12$	Quark model
[Kiselev and Likhoded, 2002a]	3480 ± 50	Potential approach + QCD sum rules
[Narodetskii and Trusov, 2002a]	3690	Nonperturbative string
[Ebert et al., 2002]	3620	Relativistic quark-diquark
		•

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Comparison of predictions for $M(\Xi_{cc})$ from [Karliner and Rosner, 2014] (II)

Reference	Value (MeV)	Method
[He et al., 2004]	3520	Bag model
[Richard and Stancu, 2005]	3643	Potential model
[Migura et al., 2006]	3642	Relativistic quark model + Bethe-Salpeter
[Albertus et al., 2007b]	3612^{+17}	Variational
[Roberts and Pervin, 2008]	3678	Quark model
[Weng et al., 2011]	3540 ± 20	Instantaneous approx. + Bethe-Salpeter
[Zhang and Huang, 2008]	4260 ± 190	QCD sum rules
[Lewis et al., 2001]	$3608(15)(\frac{13}{35}),$	
	3595(12)(21)(22)	Quenched lattice
[Flynn et al., 2003]	3549(13)(19)(92)	Quenched lattice
[Liu et al., 2010]	$3665 \pm 17 \pm 14^{+0}_{-78}$	Lattice, domain-wall + KS fermions
[Namekawa, 2012]	3603(15)(16)	Lattice, $N_f = 2 + 1$
[Alexandrou et al., 2012]	3513(23)(14)	LGT, twisted mass ferm., m_{π} =260 MeV
[Briceno et al., 2012]	3595(39)(20)(6)	LGT, $N_f = 2 + 1$, $m_\pi = 200$ MeV
[Alexandrou et al., 2014]	3568(14)(19)(1)	LGT, $N_{f} = 2 + 1$, $m_{\pi} = 210$ MeV

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Total width within OPE

$$\Gamma_{\Xi_{cc}} = \frac{1}{2M_{\Xi_{cc}}} \langle \Xi_{cc}^{\diamond} | \mathcal{T} | \Xi_{cc}^{\diamond} \rangle$$

$$\langle \Xi_{cc} | \Xi_{cc} \rangle = 2EV$$

$$\mathcal{T} = \Im m \int d^4 x \, \{ \mathrm{T} H_{eff}(x) H_{eff}(0) \}$$

where H_{eff} is the standard effective hamiltonian describing the low energy weak interactions of initial quarks with the decay products. For the transition of c-quark, u-quark and the quarks $q_{1,2}$ with the charge -1/3, the lagrangian has the form

$$H_{eff} = \frac{G_F}{2\sqrt{2}} V_{uq_1} V_{cq_1}^* [C_+(\mu)O_+ + C_-(\mu)O_-] + \text{h.c.}$$

where V is the matrix of mixing between the charged currents, and

$$O_{\pm} = [\bar{q}_{1\alpha}\gamma_{\nu}(1-\gamma_5)c_{\beta}][\bar{u}_{\gamma}\gamma^{\nu}(1-\gamma_5)q_{2\delta}](\delta_{\alpha\beta}\delta_{\gamma\delta}\pm\delta_{\alpha\delta}\delta_{\gamma\beta}),$$

 α,β are color states of quarks and

$$C_{+} = \left[\frac{\alpha_s(M_W)}{\alpha_s(\mu)}\right]^{\frac{6}{33-2n_f}}, \quad C_{-} = \left[\frac{\alpha_s(M_W)}{\alpha_s(\mu)}\right]^{\frac{-12}{33-2n_f}}$$

where n_f is the number of flavors.

OPE for the transition operator ${\cal T}$

$$\mathcal{T} = C_1(\mu)\bar{c}c + \frac{1}{m_c^2}C_2(\mu)\bar{c}g\sigma_{\mu\nu}G^{\mu\nu}c + \frac{1}{m_c^3}O(1).$$

Spectator contribution:

Main features:

- $\bar{c}c$ spectator decays of c-quarks;
- no operators of dimension 4 contribute;
- the only operator of dimension 5 ;
- Pauli interference (operators of dimension
 6) essentially contribute to \(\mathcal{Z}^{++}_{cc}\) life time;
- weak scattering (operators of dimension
 6) essentially contribute to Ξ⁺_{cc} life time.

$$\begin{split} \mathcal{T}^{\left(\Xi_{cc}^{++}\right)} &= 2(\mathcal{T}_{35c} + \mathcal{T}_{\mathrm{PI},u\bar{d}}^{c}), \qquad \mathcal{T}^{\left(\Xi_{cc}^{+}\right)} = 2(\mathcal{T}_{35c} + \mathcal{T}_{\mathrm{WS},cd}), \\ \mathcal{T}_{\mathrm{PI},u\bar{d}}^{c} &= -\frac{G_{F}^{2}}{4\pi} m_{c}^{2} \left(1 - \frac{m_{u}}{m_{c}}\right)^{2} \times \\ & \left\{ \left[G_{1}(z_{-})(\bar{c}c)_{V-A}^{ij}(\bar{u}u)_{V-A}^{ij} + G_{2}(z_{-})(\bar{c}c)_{A}^{ii}(\bar{u}u)_{V-A}^{jj}\right] \left[F_{3} + \frac{1}{3}(1 - k^{\frac{1}{2}})F_{4}\right] + \\ & \left[G_{1}(z_{-})(\bar{c}c)_{V-A}^{ij}(\bar{u}u)_{V-A}^{ji} + G_{2}(z_{-})(\bar{c}c)_{A}^{ij}(\bar{u}u)_{V-A}^{ji}\right] k^{\frac{1}{2}}F_{4}\right\}, \\ \mathcal{T}_{\mathrm{WS},cd} &= \frac{G_{F}^{2}}{4\pi} m_{c}^{2} \left(1 + \frac{m_{d}}{m_{c}}\right)^{2} (1 - z_{+})^{2} \left[(F_{6} + \frac{1}{3}(1 - k^{\frac{1}{2}})F_{5})(\bar{c}c)_{V-A}^{ii}(\bar{d}d)_{V-A}^{jj} + \\ & k^{\frac{1}{2}}F_{5}(\bar{c}c)_{V-A}^{ij}(\bar{d}d)_{V-A}^{ji}\right], \\ F_{1,3} &= (C_{+} \mp C_{-})^{2}, \qquad F_{2,4} = 5C_{+}^{2} + C_{-}^{2} \pm 6C_{+}C_{-}, \qquad F_{5,6} = C_{+}^{2} \mp C_{-}^{2}, \\ G_{1}(z) &= \frac{(1 - z)^{2}}{2} - \frac{(1 - z)^{3}}{4}, \qquad G_{2}(z) = \frac{(1 - z)^{2}}{2} - \frac{(1 - z)^{3}}{3}, \\ z_{-} &= \frac{m_{s}^{2}}{(m_{c} - m_{u})^{2}}, \qquad z_{+} = \frac{m_{s}^{2}}{(m_{c} + m_{d})^{2}} \\ (\bar{c}c)_{V-A}^{ii}(\bar{q}q)_{V-A}^{ij} = -(\bar{c}c)_{V-A}^{ij}(\bar{q}q)_{V-A}^{ij} = 12(m_{c} + m_{q})|\Psi^{dl}(0)|^{2} \end{split}$$

Model parameters and life time estimation

m_c , m_q , $M(\Xi_{cc}^{++})$, $M(\Xi_{cc}^{+})$, T and $\Psi^{dl}(0)$

- $m_c = 1.6$ GeV (taken from the pole *c*-quark mass (lifetime and semileptonic decays of D^0 meson).
- T = 0.4 GeV the kinetic energy of diquark and light quark (potential models).

•
$$|\Psi^{dl}(0)|^2 = (2.7 \pm 0.2) \times 10^{-3} \text{ GeV}^3$$

$$au(\Xi_{cc}^{++}) = 0.48 \text{ ps} \qquad au(\Xi_{cc}^{+}) = 0.12 \text{ ps}$$

Dependence on parameter values: Ξ_{cc} , Ω_{cc}

Quarks' masses for meson and baryon could be different [Karliner and Rosner, 2014]

 $m_c = 1.694 \pm 0.03 \, \text{GeV}$ 0.7 0.6 0.25 0.3 0.5 r,ps 0.4 음 0.2 0.3 0.10 0.2 0.1 0.05 0 1 0.0 0.00 1.3 1.4 1.5 16 1.8 1.9 2.0 0.1 0.2 0.3 0.4 0.5 0.0026 0.0028 0.0030 0.0032 0.0034 0.0036 14d1(0)12, GeV3 mc, GeV m₂, GeV

 $\tau(\Xi_{cc}^{++}) = 0.26 \pm 0.03 \, \mathrm{ps}, \qquad \tau(\Xi_{cc}^{+}) = 0.14 \pm 0.01 \mathrm{ps}, \quad \tau(\Omega_{cc}^{+}) = 0.19 \pm 0.01 \, \mathrm{ps}$

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Dependence on parameter values: Ξ_{bc} , Ω_{bc}

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Dependence on parameter values: Ξ_{bb} , Ω_{bb}

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде 00 00000 00 00 00 00 00 000</td

Comparison with other Results

Karliner, Rosner // PRD 90 (2014) 094007

$$m_s = 538 \text{ MeV}, \quad m_c = 1.7105 \text{ GeV}$$

$$\tau_{\Xi_{cc}^{++}} = \left[\frac{10}{G_F^2 M_{\Xi_{cc}}^2} f\left(\frac{M_{\Xi_{cc}}^2}{M_{\Xi_{cc}}^2}\right) \right]^{-1} \approx 0.185 \, \mathrm{ps}$$

Do not agree with n total life

• No PI, WS
$$\Rightarrow \tau_{\Xi_{cc}^+} = \tau_{\Xi_{cc}^{++}}$$

 $\mathsf{OPE} \Rightarrow \tau_{\Xi_{cc}^{++}} = 0.32\,\mathrm{ps}$

Karliner, Rosner // Phys.Rev. D97 (2018) 094006

 $m_s = 482.2 \,\mathrm{MeV}, \qquad m_c = 1.6556 \,\mathrm{GeV}$

No lifetime predictions presented OPE $\Rightarrow \tau_{\Xi_{cc}^{++}} = 0.37 \, \mathrm{ps}$

Cheng, Shi // arXiv:1809.08102v1 [hep-ph]

 $m_c = 1.56 \,\mathrm{GeV}$

Dimension 7 operators

$$\tau_{\Xi_{cc}^{++}} = 0.298 \, \mathrm{ps}, \qquad \tau_{\Xi_{cc}^{+}} = 0.044 \, \mathrm{ps}, \qquad \tau_{\Omega_{cc}^{+}} = 0.2 \mathrm{ps}$$

Exclusive decays

The formfactor of decay for the baryon with the spin $\frac{1}{2}$ into the baryon with the spin $\frac{1}{2}$ is expressed in the general form as follows:

$$\langle H_F(p_F)|J_{\mu}|H_I(p_I)\rangle = \bar{u}(p_F)\{\gamma_{\mu}G_1^V + v_{\mu}^I G_2^V + v_{\mu}^F G_3^V + \gamma_5(\gamma_{\mu}G_1^A + v_{\mu}^I G_2^A + v_{\mu}^F G_3^A)\}u(p_I).$$

At small recoils $v^i \sim v^f$ and $v^i \cdot v^f = w \sim 1$. This is why only two of six form factors are not suppressed by heavy qaurk mass, namely

$$G_1^V = G_1^A = \xi(w),$$

where $\xi(w)$ is so-called Isgur-Wise form factor. CVC gives $\xi(1) = 1$.

$$\xi(w) = \frac{\xi(1)}{1 - q^2/m_{\text{pol}}^2}$$

 $m_{\rm pol}(b \to c) = 6.3 {\rm ~GeV}$

$$m_{\rm pol}(c \to s) = 1.85 \,\, {\rm GeV}$$

SELEX results

 $\begin{array}{l} \mbox{Peak interpreted as } \Xi_{cc}^{+} \mbox{ is seen at fixed target experiment} \\ \mbox{SELEX for baryon beams only}(\ensuremath{\Sigma^{-}}\xspace and \ensuremath{p}\xspace, not \ensuremath{\pi^{-}}\xspace) \mbox{ in modes } \Xi_{cc}^{+} \rightarrow \Lambda_c K^- \ensuremath{\pi^{+}}\xspace and \ensuremath{\Xi_{cc}}\xspace \rightarrow pD^+K^- \\ \mbox{ [Ocherashvili et al., 2005].} \end{array}$

 $\frac{\Gamma(pD^+K^-)}{\Gamma(\Lambda_cK^-\pi^+)} = 0.36 \pm 0.21 \qquad \tau(\Xi_{cc}^+) < 0.033 ~ \mathrm{ps}$

$$N(\Xi_{cc}^+)/N(\Lambda_c) \approx 20\%$$

No confirmation from other experiments.

The resonance observed by SELEX and interpreted as Ξ_{cc} have an extremely short lifetime and an extremely large cross-section.

For fist time these problems were discussed in [Kiselev and Likhoded, 2002b].

Five narrow Ω_s^0 states decaying to $\Xi_c^+ K^-$

Введение	Спектроскопия	Рождение	Времена жизни	Эксклюзивные распады	Выводы	Дополнительные слайды

Ссылки

Введение Осектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

📄 Aaij, R. et al. (2017a).

Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+ K^-$. Phys. Rev. Lett., 118(18):182001.

📔 Aaij, R. et al. (2017b).

Observation of the doubly charmed baryon $\Xi_{cc}^{++}.$

Aaij, R. et al. (2018a).

First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$. Phys. Rev. Lett., 121(16):162002.

📔 Aaij, R. et al. (2018b).

Measurement of the Lifetime of the Doubly Charmed Baryon Ξ_{cc}^{++} . *Phys. Rev. Lett.*, 121(5):052002.

Albertus, C., Hernandez, E., Nieves, J., and Verde-Velasco, J. (2007a). Doubly heavy quark baryon spectroscopy and semileptonic decay. *Eur.Phys.J.*, A31:691–694.

Albertus, C., Hernandez, E., Nieves, J., and Verde-Velasco, J. (2007b). Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model.

Eur.Phys.J., A32:183-199.

- Alexandrou, C., Carbonell, J., Christaras, D., Drach, V., Gravina, M., and Papinutto, M. (2012).

Strange and charm baryon masses with two flavors of dynamical twisted mass fermions.

Phys. Rev., D86:114501.

Alexandrou, C., Drach, V., Jansen, K., Kallidonis, C., and Koutsou, G. (2014).

Baryon spectrum with $N_f = 2 + 1 + 1$ twisted mass fermions. *Phys. Rev.*, D90(7):074501.

Anikeev, K. et al. (2001).

 ${\cal B}$ physics at the Tevatron: Run II and beyond.

In Workshop on B Physics at the Tevatron: Run II and Beyond Batavia, Illinois, September 23-25, 1999.

Baranov, S. (1997).

Hadronic and photonic production of doubly flavored baryons.

Nucl.Phys.Proc.Suppl., 55A:33-35.

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Hadronic production of baryons containing two heavy quarks. *Phys.Atom.Nucl.*, 59:870–874.

Berezhnoy, A., Kiselev, V., Likhoded, A., and Onishchenko, A. (1998). Doubly charmed baryon production in hadronic experiments. *Phys.Rev.*, D57:4385–4392.

Blusk, S. (2017).

Experimental aspects for discovering x_{bc} .

CERN.

Workshop on heavy hadron spectroscopy, CERN,17-18 Jul 2017, https://indico.cern.ch/event/646144/timetable/.

Brambilla, N., Vairo, A., and Rosch, T. (2005).

Effective field theory Lagrangians for baryons with two and three heavy quarks.

Phys.Rev., D72:034021.

Briceno, R. A., Lin, H.-W., and Bolton, D. R. (2012).

Charmed-Baryon Spectroscopy from Lattice QCD with $\mathsf{Nf}{=}2{+}1{+}1$ Flavors.

Phys. Rev., D86:094504.

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Chang, C.-H., Qiao, C.-F., Wang, J.-X., and Wu, X.-G. (2006).

Estimate of the hadronic production of the doubly charmed baryon ${\rm Xi}({\rm cc})$ under GM-VFN scheme.

Phys.Rev., D73:094022.

- Chang, C.-H., Wang, J.-X., and Wu, X.-G. (2007). GENXICC: A Generator for hadronic production of the double heavy baryons Xi(cc), Xi(bc) and Xi(bb). *Comput.Phys.Commun.*, 177:467–478.
- Chen, G., Wu, X.-G., Zhang, J.-W., Han, H.-Y., and Fu, H.-B. (2014).
 Hadronic production of \(\mathcal{E}_{cc}\) at a fixed-target experiment at the LHC.
 Phys.Rev., D89:074020.
 - De Rujula, A., Georgi, H., and Glashow, S. L. (1975). Hadron Masses in a Gauge Theory. *Phys. Rev.*, D12:147–162.
- Ebert, D., Faustov, R. N., and Galkin, V. O. (2003).

Properties of heavy quarkonia and $B_c\ \mathrm{mesons}$ in the relativistic quark model.

Phys. Rev., D67:014027.

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Ebert, D., Faustov, R. N., and Galkin, V. O. (2011).

Spectroscopy and Regge trajectories of heavy quarkonia and B_c mesons. *Eur. Phys. J.*, C71:1825.

- Ebert, D., Faustov, R. N., Galkin, V. O., and Martynenko, A. P. (2002). Mass spectra of doubly heavy baryons in the relativistic quark model. *Phys. Rev.*, D66:014008.
- Ebert, D., Faustov, R. N., Galkin, V. O., Martynenko, A. P., and Saleev, V. A. (1997).

Heavy baryons in the relativistic quark model.

Z. Phys., C76:111–115.

Falk, A. F., Luke, M. E., Savage, M. J., and Wise, M. B. (1994). Heavy quark fragmentation to baryons containing two heavy quarks. *Phys.Rev.*, D49:555–558.

Fleck, S. and Richard, J. M. (1989). Baryons with double charm.

Prog. Theor. Phys., 82:760-774.

Flynn, J., Mescia, F., and Tariq, A. S. B. (2003).

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайд Spectroscopy of doubly charmed baryons in lattice QCD. JHEP. 0307:066. Gerasyuta, S. M. and Ivanov, D. V. (1999). Charmed baryons in bootstrap quark model. Nuovo Cim., A112:261-276. Gershtein, S., Kiselev, V., Likhoded, A., and Onishchenko, A. a. (1999a). Spectroscopy of doubly heavy baryons. Heavy Ion Phys., 9:133-144. Gershtein, S., Kiselev, V., Likhoded, A., Tkabladze, A., Berezhnoy, A., et al. (1997). Theoretical status of the B(c) meson. Gershtein, S. S., Kiselev, V. V., Likhoded, A. K., and Onishchenko, A. I. (1999b). Spectroscopy of doubly charmed baryons: Xi(cc) + and Xi(cc) ++. Mod. Phys. Lett., A14:135-146.

Gershtein, S. S., Kiselev, V. V., Likhoded, A. K., and Onishchenko, A. I. (2000). Spectroscopy of doubly heavy baryons.

Phys. Rev., D62:054021.

He, D.-H., Qian, K., Ding, Y.-B., Li, X.-Q., and Shen, P.-N. (2004). Evaluation of spectra of baryons containing two heavy quarks in bag model.

Phys. Rev., D70:094004.

Itoh, C., Minamikawa, T., Miura, K., and Watanabe, T. (2000). Doubly charmed baryon masses and quark wave functions in baryons. *Phys. Rev.*, D61:057502.

Karliner, M. and Rosner, J. L. (2014).

Baryons with two heavy quarks: Masses, production, decays, and detection.

Kerbikov, B. O., Polikarpov, M. I., and Shevchenko, L. V. (1990).

Multi - Quark Masses and Wave Functions Through Modified Green's Function Monte Carlo Method.

Nucl. Phys., B331:19.

Kiselev, A. V., Berezhnoy, A. V., and Likhoded, A. K. (2017). Quark-diquark structure and masses of doubly charmed baryons.

Baryons with two heavy quarks. *Phys.Usp.*, 45:455–506.

- Kiselev, V. and Likhoded, A. (2002b).

Comment on 'First observation of doubly charmed baryon Xi(cc)+'.

Korner, J. G., Kramer, M., and Pirjol, D. (1994). Heavy baryons. *Prog. Part. Nucl. Phys.*, 33:787–868.

Lewis, R., Mathur, N., and Woloshyn, R. M. (2001). Charmed baryons in lattice QCD.

Phys. Rev., D64:094509.

Lichtenberg, D. B., Roncaglia, R., and Predazzi, E. (1996). Mass sum rules for singly and doubly heavy flavored hadrons. *Phys. Rev.*, D53:6678–6681.

Liu, L., Lin, H.-W., Orginos, K., and Walker-Loud, A. (2010).
 Singly and Doubly Charmed J=1/2 Baryon Spectrum from Lattice QCD.
 Phys. Rev., D81:094505.

Mathur, N., Lewis, R., and Woloshyn, R. M. (2002).

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Charmed and bottom baryons from lattice NRQCD. *Phys. Rev.*, D66:014502.

Migura, S., Merten, D., Metsch, B., and Petry, H.-R. (2006). Charmed baryons in a relativistic quark model.

Eur. Phys. J., A28:41.

Namekawa, Y. (2012).

Charmed baryon spectroscopy on the physical point in 2+1 flavor lattice QCD.

PoS, LATTICE2012:139.

Narodetskii, I. M. and Trusov, M. A. (2002a).

The Doubly heavy baryons in the nonperturbative QCD approach.

In The structure of baryons. Proceedings, 9th International Conference, Baryons 2002, Newport News, USA, March 3-8, 2002, pages 639–642.

Narodetskii, I. M. and Trusov, M. A. (2002b).

The Heavy baryons in the nonperturbative string approach.

Phys. Atom. Nucl., 65:917–924.

[Yad. Fiz.65,949(2002)].

Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайде

Confirmation of the double charm baryon Xi+(cc)(3520) via its decay to p D+ K-.

Phys.Lett., B628:18-24.

Richard, J.-M. (1994).

Hadrons with two heavy quarks.

In Workshop on the Future of High Sensitivity Charm Experiments: CHARM2000 Batavia, Illinois, June 7-9, 1994, pages 95–102.

Richard, J. M. and Stancu, F. (2005). Double charm hadrons revisited. *Bled Workshops Phys.*, 6(1):25–31.

Roberts, W. and Pervin, M. (2008). Heavy baryons in a quark model. *Int. J. Mod. Phys.*, A23:2817–2860.

Roncaglia, R., Dzierba, A., Lichtenberg, D. B., and Predazzi, E. (1995a). Predicting the masses of heavy hadrons without an explicit Hamiltonian. *Phys. Rev.*, D51:1248–1257.

Roncaglia, R., Lichtenberg, D. B., and Predazzi, E. (1995b). Predicting the masses of baryons containing one or two heavy quarks. Введение Спектроскопия Рождение Времена жизни Эксклюзивные распады Выводы Дополнительные слайди

Phys. Rev., D52:1722-1725.

- Silvestre-Brac, B. (1996a).

Spectroscopy of baryons containing heavy quarks.

Prog. Part. Nucl. Phys., 36:263–273.

- Silvestre-Brac, B. (1996b).

Spectrum and static properties of heavy baryons.

Few Body Syst., 20:1–25.

 Tong, S.-P., Ding, Y.-B., Guo, X.-H., Jin, H.-Y., Li, X.-Q., Shen, P.-N., and Zhang, R. (2000).
 Spectra of baryons containing two heavy quarks in potential model. *Phys. Rev.*, D62:054024.

Vijande, J., Garcilazo, H., Valcarce, A., and Fernandez, F. (2004). Spectroscopy of doubly charmed baryons. *Phys. Rev.*, D70:054022.

Weng, M. H., Guo, X. H., and Thomas, A. W. (2011).

Bethe-Salpeter equation for doubly heavy baryons in the covariant instantaneous approximation.

Phys. Rev., D83:056006.

 Введение
 Спектроскопия
 Рождение
 Времена жизни
 Эксклюзивные распады
 Выводы
 Дополнительные слайди

 00
 00000
 00000
 00
 00
 00
 00
 00
 00
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <td

Zhang, J.-R. and Huang, M.-Q. (2008).

Doubly heavy baryons in QCD sum rules. *Phys. Rev.*, D78:094007.

Phys.Rev., D83:034026.