

Черенковские Чтения 19 апреля 2022

Нейтринный телескоп Baikal-GVD - первые результаты и ближайшие планы

Дмитрий Заборов (ИЯИ РАН)

Neutrino telescope world map 2022

Baikal-GVD collaboration (as of Feb 2022)

11 organisations from 6 countries, ~70 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- EvoLogics (Berlin, Germany)
- Comenius University (Bratislava, Slovakia)
- Krakow Institute for Nuclear Research (Krakow, Poland)
- Institute of Nuclear Physics (Almaty, the Republic of Kazakhstan)

Baikal-GVD site

- High water transparency
 - Absorption length: 22 m
 - ✓ Scattering length: 30 50 m ($L_{eff} \approx 480$ m)
- Moderately low optical background: 15–40 kHz (PMT R7081-100 Ø10")

- 51° 46' N 104° 24' E
- Southern basin of Lake Baikal
- ~ 4 km away from shore
- Flat area at depths 1366 1367 m
- Stable ice cover for 6–8 weeks in February April: detector deployment & maintenance

Baikal-GVD optical module

GVD cluster

String

٠

(3 section modules + 1 string module)

- Data network: ٠ shDSL 5.7 Mbit
- Depths from 750 m to 1275 m

Cluster

- 8 strings (288 OMs)
- 60 m spacing between strings
- Central electronics (power, trigger, data transmission) located at 30 m depth
- Hardware trigger: 4 p.e. hit + 1.5 • p.e. hit on adjacent OM in 100 ns window
- Inter-section synchronization by common trigger (~ 2 ns accuracy)
- Internal network: shDSL 5.7 Mbit
- Connection to shore: Ethernet / optic fiber

Д. Заборов - Baikal-GVD

Экспедиция 2022

- Установлено:
 - два новых кластера (16 гирлянд)
 - 1 дополнительная межкластерная гирлянда (36 ОМ + лазер)
 - 2 экспериментальные гирлянды на оптоволоконной технологии связи (активно 48 ОМ)
 - 1 отдельная лазерная станция
- Проведён плановый ремонт ранее установленного оборудования

Baikal-GVD construction status 2022 and schedule

10 clusters + 1 special string (laser+36 OM) + 2 experimental strings + 4 laser stations

Effective volume 2022: 0.50 km^3 (cascades E > 100 TeV)

Д. Заборов - Baikal-GVD

Neutrino effective volume for tracks (one GVD cluster)

Д. Заборов - Baikal-GVD

Expected performance for tracks

Angular resolution

(TeV) Balkal-GVD MC, preliminary Etrue 102 10 10² 10 Erec (TeV)

Energy reconstruction

Improvements expected from likelihoodbased reconstruction (under development) energy resolution ~ factor 3 at E ~ 100 TeV (\pm 34% containment band)

```
G. Safronov @ ICRC 2021
```

Atmospheric muons with Baikal-GVD (single cluster)

Before quality cuts

Data taken between Apr 1 and Jun 30, 2019 with 5 clusters

~ 9 800 000 events reconstructed with at least 8 hits on at least 2 strings

Good agreement for cos(zenith) > 0.2

MC underpredicts the rate of misreconstructed events in the upgoing region by a factor of 3.5 (under study)

NB: most of these events are muon bundles (average multiplicity ~ 10)

Eur. Phys. J. C 81 (2021) 1025

Atmospheric neutrinos with Baikal-GVD (single cluster)

Median energy of this sample $\approx 500 \text{ GeV}$

Eur. Phys. J. C 81 (2021) 1025

Multi-cluster track events

Work in progress !

Cascade analysis : effective area and rates

Analysis sensitive to all-flavour CC and NC interactions over the whole sky

Assumption for astrophysical neutrino energy spectrum (IceCube fit): 4.1 • 10⁻⁶ F^{-2.46} GeV⁻¹ cm⁻² s⁻¹ sr⁻¹

neutrino effective area for cascade detection

Cascade analysis performance

Directional resolution for cascades: 2°- 4° - median mismatch angle

Energy resolution : $\delta E/E \sim 10\%$ -30%

Cascade analysis : data and MC

Preliminary

Data from 2019-2020, livetime: 2915 days single-cluster equivalent

MC atmospheric muons - Corsika 7.74, Sybill 2.3c, protons, E_n >100 TeV

Upward-going cascade

Preliminary

GVD2019_1_114_N

Contained event (50 m off central string)

Excellent candidate for a neutrino event of astrophysical origin

Sky plot of γ-ray sources (credit: D.Semikoz, A.Neronov)

known sources in 3 degree circle: PKS 0302-16 : unknown type of source PMN J0301-1652 : unknown type of source GVD 18 µ3 26

Д. Заборов - Baikal-GVD

Improved cascade event selection

Search for early hits from muon track

Use it in event selection

This improves atmospheric muon rejection by an order of magnitude

After final cuts:

MC atm. muons : 4 events MC astrophys. flux: 5 events data (2019-2020) : 7 events

+3 events in 2018 data

> 50% purity expected for E > 100 TeV neutrino sample

See talks by Zh. Dzhilkibaev and Z. Bardačová @ ICRC 2021

Д. Заборов - Baikal-GVD

DM Z position [m]

200 F

100

-100

-200

Preliminary

Sky map with 10 Baikal-GVD cascade events

Legend

Background image: Fermi LAT

Green circles: Baikal-GVD events 2018 (50% and 90% C.L. regions)

White circles: Baikal-GVD events 2019-2020

Event doublet near Galactic plane Preliminary

Sky map of Fermi sources

LSI +61 303 – y- ray active microguasar

3.1° from GVD 2019 153 N and 7.4° from GVD 2018 656 N

Using PSFs of all 10 events the chance probability to observe such a doublet near LSI +61 303 was estimated: p-value = 0.007 or 2.7 σ (preliminary)

Д. Заборов - Baikal-GVD

10

GVD follow up of ANTARES alerts

Following ANTARES upgoing μ alerts (<E> = 7 TeV) Time windows: ±500 sec, ±1 hour and ±1 day Both upgoing and downgoing cascades are looked for

Since Dec 2018, \sim 50 alerts have been analysed

3 potentially interesting events

ANT alert	GVD cluster	T-T _{alert} , hours	Energy, TeV
A7	3	+20.8	13.5
A7	3	-23.2	158
A7	2	-3.2	2.9
A15	2	+20.4	3.0
A15	3	-0.64	3.98
A16	2	-18.7	3.99
A16	4	-14.35	3.89

No prompt coincidence in time and direction was found

See talks by O. Suvorova and A.Garre @ ICRC 2021

Д. Заборов - Baikal-GVD

GVD follow up of IceCube alerts

Since Sep 2020, following IC alerts (GCN / upgoing muons)

No statistically significant coincidence was found in this analysis, except possibly IceCube-211208A (see next slide)

90% upper limits derived for E-2 spectrum, equal fluence in all flavors, for E $\,1\,\text{TeV}-10\,\text{PeV}$ and $\pm12\,\text{hr}$ interval

Baikal-GVD upper limits

A.D. Avrorin et al., Astronomy Letters, Vol.47, N 2, 114 (2021) http://dx.doi.org/10.1134/S1063773721020018 V.Y. Dik et al., JINST 16 (2021) C11008 https://doi.org/10.1088/1748-0221/16/11/C11008

Declination () аборов - Baikal-GVD

Baikal-GVD follow up of IceCube-211208A / PKS 0735+17

Dec 8, 2021 20:02: IceCube "Astrotrack Bronze" neutrino event
Dec 9, 2021: MASTER reports optical activity of PKS 0735+17 (slightly outside the 90% IceCube uncertainty region)
... PKS 0735+17 observed in HE gamma-rays (Fermi LAT), X-rays (Swift XRT) and radio
... ANTARES reports upper limits for PKS 0735+17 (no detection)
... KM3Net reports a neutrino with a background p-value = 0.14
... Baikal-GVD reports a downward-going (30° above horizon)
cascade-like event 4 hr after the IceCube event from the direction RA=119.44°, Dec=18.00°, that is 4.68° from PKS 0735+17 and 5.30°

Estimated energy = 43 TeV PSF 50% (68%) containment radius = 5.5 deg (8.1 deg) **Background estimate: 0.0044 events** in the 5.5 deg cone in 24 hr (2.85 σ). Trail factors to be scrutinized

* PKS 0735+17 is a bright blazar very similar to TXS 0506+056 19 апр 2022 Д. Заборов - Baikal-GVD

Image by D.Semikoz & A.Neronov

ATeL 15112

PKS 0735+17 : a neutrino-emitting blazar?

A model with PeV protons interacting with an external UV photon field predicts ~ 0.067 muon and antimuon neutrinos over the observed 3-week flare.

Заключение

- Baikal-GVD новый нейтринный телескоп в озере Байкал
 - Объём порядка 1 км³ (по завершении строительства)
 - Угловое разрешение лучше 1° (для треков)
 - Область зрения эффективно дополняет IceCube
- Обнаружены первые намеки на возможные новые астрофизические источники нейтрино
- Идет набор данных с 10 кластерами (~ 0.5 км³)

Backup slides

Neutrino effective area for tracks : one GVD cluster

Cascade analysis angular resulution

A 1 PeV cascade event (downgoing) Preliminary

GVD_2019_112_N

Fermi sources in 5° circle: RBS 1409 BL Lac z=unknown 1ES 1421+582 z=unknown both with hard spectrum

Selected events (2018-2020)

Preliminary

	E, TeV	θ _{z,} degree	φ, degree	R.A.	Dec
GVD2018_354_N	105	37	331	118.2	72.5
GVD2018_383_N	115	73	112	35.4	1.1
GVD2018_656_N	398	64	347	55.6	62.4
GVD2019_112_N	1200	61	329	217.7	57.6
GVD2019_114_N	91	109	92	45.1	-16.7
GVD2019_663_N	83	50	276	163.6	34.2
GVD2019_153_N	129	50	321	33.7	61.4
GVD2020_175_N	110	71	185	295.3	-18.9
GVD2020_332_N	74	92	9	223.0	35.4
GVD2020_399_N	246	57	49	131.9	50.2

Д. Заборов - Baikal-GVD

Deployment

19 апр 2022

Д. Заборов - Baikal-GVD

Water optical properties

Calibration devices

- Section calibration: 2 LEDs in each OM, 470 nm, 1 10⁸ ph., 5 ns
- String calibration: LED beacons in 12 OMs of the cluster
- Cluster calibration: 2 lasers per station, 532 nm, 10¹² 10¹⁵ ph., 1 ns

Calibration accuracy ~2 ns

Acoustic positioning

OM drift can reach tens of meters, depending on season and elevation String geometry monitored with acoustic modems (4 AMs per string) OM coordinates are obtained by interpolating AM coordinates, accuracy ~ 20 cm

Experimental string with optic fiber DAQ

Developing technological solutions for second stage of Baikal-GVD deployment (2024+)

Advantages:

- flexible trigger conditions
- Improved neutrino detection efficiency
- Improved timing accuracy

See poster by V. Aynutdinov @ ICRC 2021

Reconstructed energy for tracks

Example plot for a set of neutrino candidate events

- dE/dx energy estimator -
- Works for E > 1 TeV

see talk by

 Largest measured energy in cutbased low-energy neutrino candidate sample:

G. Safronov at ICRC 2021

cluster 1, run 84 evt. 473478 $\theta = 165.5^{\circ}$ $N_{strings} = 3$ $N_{hits} = 10$

Д. Заборов - Baikal-GVD

Track reco : ongoing improvements

- Event selection with BDT
 → G. Safronov @ ICRC 2021
- Improved hit selection using clique search → A. Avrorin & B. Shaybonov @ ICRC 2021
- Likelihood fitter
- Machine learning techniques

Event types

Single-cluster tracks

- Low energy threshold
- Optimal sensitivity to nearly vertical tracks
- 90% of recorded track events

Multi-cluster tracks

- Moderately low energy threshold
- Optimal sensitivity to inclined tracks
- 10% of recorded track events

Single-cluster cascades

- High energy threshold
- Good energy resolution
- Relatively rare events

NC, $\nu_e \nu_{\tau} CC$

Multi-cluster cascades

- Very high energy threshold
- Excellent energy resolution
- Very rare events

Neutrino absorption in the Earth

19 апр 2022

Д. Заборов - Baikal-GVD

40 из 26