ИЯИ РАН, 19 апреля 2022 г.

С.С. Хохлов от коллектива Научно-образовательного центра НЕВОД

Новый квазисферический модуль КСМ-6М для развития черенковского водного калориметра НЕВОД

XV Черенковские чтения

План доклада

- 1. Оптические модули черенковских детекторов.
- 2. Развитие ЭК НЕВОД.
- 3. ФЭУ Hamamatsu R877.
- 4. Результаты тестирования КСМ-6М.
- 5. Заключение.

Черенковское излучение

 1934 г. <u>П.А.Черенков</u> – Открытие нового вида излучения

$$cos\theta = rac{1}{neta}$$

 1937 г. <u>И.Е. Тамм и И.М. Франк</u>теоретическое объяснение явления

1958 г. - <u>П. А. Черенков, И. Е. Тамм и И.</u>
 <u>М. Франк</u> - Нобелевская премия по физике.

П.А.Черенков

Изобретатель ФЭУ Л.А.Кубецкий (1906 - 1959)

1930 – идея прибора;
1936 – первый образец;
1948 – Государственная премия СССР.

DUMAND project (Deep Underwater Muon And Neutrino Detector), 1976 -1995

Место расположения: Тихий океан. Объем: 0.5 км³.

Требования к оптическим модулям

При разработке проекта DUMAND в лаборатории Philips в 1983 г. были сформулированы требования к оптическим модулям:

- максимально возможная чувствительность к черенковскому свету;
- большой угол приема с максимально возможной чувствительной площадью;
- максимально высокое временное разрешение;
- максимально высокое одноэлектронное разрешение.

Три концепции оптических модулей

- Европейский оптический модуль: маленький ФЭУ с системой электронно-оптического предусиления.
- Японский оптический модуль: в основе большой полусферический фотоумножитель.

- Квазисферический модуль: система из разнонаправленных ФЭУ.

Европейский оптический модуль DUMAND концепции Smart (1983)

Гибридный ФЭУ Philips XP2600;
Диаметр 15";
Электронно-оптическое предусиление;
Чувствительность в телесном угле ~ 3π.

Развитие идеи ЕОМ – модули НТ-200

ФЭУ КВАЗАР-370

OM HT-200

- Диаметр ФЭУ 37 см;
- Электронно-оптическое предусиление;
- Чувствительность в телесном угле > 2π .

Японский оптический модуль DUMAND (1989)

ФЭУ Hamamatsu R2018;
Диаметр ФЭУ 15";
Диаметр ОМ 16".

Развитие идеи ЯОМ

OM AMANDA

OM ANTARES

OM Baikal-GVD

ФЭУ Hamamatsu R5912-2; Диаметр 8".

ФЭУ Hamamatsu R7081-20; Диаметр 10". ФЭУ

Hamamatsu R7081-100; Диаметр 10".

Принцип построения квазисферических модулей

Расположение ФЭУ, обеспечивающее модулю свойство сферичности, определяется на основе геометрии правильных многогранников:

Квазисферический модуль КСМ-6

Идея создания квазисферического модуля с 6ю ФЭУ с плоскими фотокатодами была представлена в 1979 году на конференции в Киото

(Borog V.V. et al., Proc. 16th ICRC, 1979 10, 380)

Модуль с 6-ю ФЭУ, ориентированными вдоль осей ортогональной системы координат – простейшая конфигурация модуля, отклик которого не зависит от направления прихода черенковского света.

Помимо независимости отклика от направления света предложенный модуль позволяет определять направление прихода черенковского излучения.

Использование идеи КСМ в других детекторах

Ярус ANTARES

Наполовину квазисферический

OM KM3NeT

31 ФЭУ диаметром 3"; Диаметр ОМ 17".

OM IceCube-Upgrade

24 ФЭУ диаметром 3"; Диаметр ОМ 8".

Черенковский водный детектор НЕВОД

• Объем 2000 м³

 Детектирование черенковского излучения
 производится
 квазисферическими
 модулями (КСМ).

 Пространственная решетка: 91 КСМ в 25 гирляндах.

 Динамический диапазон каждого канала 1 – 10⁵ ф.э.

Черенковский водный детектор НЕВОД

Боковой координатно-трековый детектор ДЕКОР

Геометрическая реконструкция события с группой мюонов

Combining muon measurements (WHISP: Working group in Hadronic Interactions and Shower Physics)

Lorenzo Cazon. 36th International Cosmic Ray Conference - ICRC2019

IceCube, NEVOD-DECOR, Pierre Auger

Координатно-трековый детектор ТРЕК Система калибровочных телескопов (СКТ) TREK Черенковский водный детектор 🕂 СКІ **ДЕКОР** горизонтально ориентированные камеры

264 дрейфовые камеры Полное перекрытие апертуры ЧВД Площадь детектора–254 м² (в 8 раз больше) Разрешение двух треков ~ 3 мм (в 10 раз

Новый квазисферический модуль КСМ-6М

Планируется создать две новых вертикальных плоскости по 16 КСМ в каждой. Объем пространственной решетки увеличится с 800 до 1200 м³.

Hamamatsu R877

ФЭУ-200

Новый оптический модуль основан на ФЭУ Hamamatsu R877.

		ФЭУ	-200	F	R877	
ато	д		пл	оский		
Іате	риал		бище	элочн	ой	
аол	ба	1	70 мм	л	133 N	1M
ато	д	1	50 мм		110 м	Μ
ин.	Сист.	жа	люзи	1 ко	робча	атая
Іисл	ю динодов		12		10	
IV		1	500		125	0

Характеристики ФЭУ Hamamatsu R877

Одноэлектронный спектр

Нелинейность 7-го динода

Response of PMTs on near-vertical muons selected by means of calibration telescopes

F	PMT in OM	D, m	Nev	Eff, %	<amp>, ph.e.</amp>	
	1	0.97	9206	93.9	12.9	
	2	0.72	6549	96.1	18.5	
	3	0.97	7538	95.2	13.8	
	4	0.72	8036	95.7	15.5	
	6	1.0	16744	90.4	7.7	/25
	6	1.25	15390	85.4	6.2	23

Отклик КСМ-6М на одиночные окологоризонтальные мюоны

Среднее значение косинуса 0.88 ± 0.16.

Исследование сферичности модуля. Подход

- исследуется не отдельно взятый модуль, а средние характеристики отклика КСМ пространственной решетки;
- КСМ «обстреливаются» черенковским светом от частиц, выделяемых с помощью системы калибровочных телескопов и трекового детектора ДЕКОР;
- количественные параметры отклика КСМ приводятся к сферическому треугольнику, составляющему 1/48 часть сферы:

Сферичность отклика КСМ-6М

Сферичность отклика ~14 %.

События с большим энерговыделением

Экспериментальный комплекс имеет специальный триггер "60с" (~4 с-1) для регистрации событий с большим энерговыделением.

Отклик КСМ-6М в событиях с большим энерговыделением

Показатель наклона спектра γ = 2.4 (близок к показателю наклона спектра энерговыделений ШАЛ). ³⁰

Отклик КСМ-6М при регистрации каскадных ливней

- Разработан оптический модуль КСМ-6М на базе ФЭУ Hamamatsu R877;
- Проведены годовые испытания в воде;
- » Сферичность КСМ-6М 14 %;
- » Рекордный диапазон линейности 6 10⁵ ф.э.;
- ≻ Телесный угол 4π.

Спасибо за внимание!