Поиск

новой заряженной частицы в диапазоне массы 2 – 140 МэВ.

М.Х.Аникина, В.А.Никитин, В.С.Рихвицкий.

Аннотация.

Предлагается закономерность распределения масс лептонов е, μ, τ, указывающая на возможность существования нового состояния («тяжёлого» электрона) с массой ~ 8 МэВ. Для его поиска просмотрено ~55 тыс. стереофотографий с 2-м пропановой пузырьковой камеры. Камера экспонирована в пучке протонов 10 ГэВ на Синхрофазотроне ОИЯИ. Анализируются события конверсии у кванта в пару заряженных частиц. Найдены 47 аномальных событий, в которых одна частица пары останавливается в объёме камеры, имеет в конце пробега повышенную плотность трека и при идентификации обнаруживает массу ~ 8 МэВ. При этом среднее значение массы новой частицы оставляет $(8,6 \pm 3,0)$ МэВ.

Поиск новых лептонов. Литература.

- А.С. Белоусов и др. Поиск частиц с массами от 6 до 25 электронных масс. ЖЭТФ, т. 37, вып. 6(12), стр. 1613, 1959. ФИАН. Пучок ү 265 МэВ.
- 2. A.N. Gorbunov et al. On the existence of particles of mass $2m_e 25m_e$. Sov. Phys. JETP, vol. 11, numb. 1, p. 51, July, 1960. Пучок γ 93 МэВ.
- 3. D. H. Coward et al. Search for charged particles with rest mass between e, μ. Phys. Rev., vol. 131, numb. 4, 15 August 1963, p.1783. Пучок p 300 МэВ
- 4. A. Barna et al. Search for New Particles Produced by High-Energy Photons. Phys. Rev., vol. 173, numb. 5, 25 September, 1968. Искомая acca > mass μ ,
- С.В. Головкин и др. Поиск тяжёлых квазистабильных лептонов, образующихся в нуклон-нуклонных взаимодействиях. Препринт ИФВЭ, СЭФ 72-58.
- Ю.Б. Бушнин и др. Поиск тяжёлых квазистабильных лептонов. Препринт ИФВЭ, СЭФ 72-116.
- 7. Определение числа нейтрино по ширине распада Z0 бозона. K.Hagiwara et al. Particle data group. Phys. Rev. D66, 010001(R), (2002).

Элементарные частицы

Стандартная модель

Имеется вакансия при n = 1. m \approx 8 МэВ. c + b × n.

Возникла задача поиска заряженной частицы с массой ~ 8 МэВ. Поиск новой частицы выполнен на фотоматериале 2-м пропановой пузырьковой камеры. В 60-е годы прошлого столетия камера была облучена на Синхрофазотроне ЛВЭ ОИЯИ протонами с энергией 10 ГэВ. Размер области пузырьковой камеры, доступный наблюдению в стереолупу и на просмотровом столе, составляет 105 x 60 x 40 см³. Камера находится в магнитном поле напряжённостью $B \approx 1,5$ Тл. Плотность жидкого пропана 0,43 г/сm³. Радиационная длина пропана $\lambda_{rad} = 104$ см. При просмотре фотоматериала отбираются события рождения пар частиц гамма квантами $\gamma \rightarrow l + l$, в которых хотя бы одна частица останавливается в просматриваемом объёме и имеет повышенное почернение вблизи последней видимой точки. Ниже показаны четыре такие типичные события. Трек в близи точки остановки обнаруживает повышенную плотность, что свидетельствует об увеличении ионизации частицы в конце пробега.

Типичные фото пропановой камеры.

Особенность распада: положительная частица переходит в отрицательную. ??

1 см

Трек оцифровывается

и на нём измеряются координаты ~ 40 точек в трёхмерном пространстве. Траектория делится на несколько интервалов. На каждом интервале вычисляется радиус кривизны $R_{exp}(l)$ в каждой точке в плоскости нормальной к вектору магнитного поля. Здесь *l* – остаточный пробег. Радиус испытывает значительные флуктуации из-за рассеяния частицы на пропане. Поэтому для вычисления импульса используется полуэмпирическая функция R(l), аппроксимирующая эксп. данные $R_{exp}(l)$. Модуль импульса частицы вычисляется по формуле $p = k \cdot B \cdot R(l) / Cos(\theta)$, где θ - угол между вектором, касательным к треку, и плоскостью камеры (глубинный угол).

Масса частицы *m* вычисляется в каждой точке траектории путём решения уравнения

$$T = \sqrt{p^2 + m^2} - m.$$
 (2)

Здесь *Т* кинетическая энергия, определяемая по пробегу *l*.

$$l(T,m) = c1 \frac{T^2}{T^{c2} + m}$$
(3)

$$c1 \approx (1,15+0.006*m) = 1/(dT/dl)_{min}$$

 $c2=1,08$

Алгоритм определения массы частиц проверяется на моделированных и экспериментально измеренных событиях электронов и мюонов .

Рис. 6. Характеристики типичного трека (рис. 3.)

<u>Панель</u> 1 — Оцифрованная траектория. <u>Панель</u> 2 — радиус кривизны, вычисленный в каждой точке траектории; красная линия — полуэмпирическая функция *R(1) (фит эксп. данных); чёрная линия — вычисленный радиус кривизны для частицы с массой 8 МэВ. <u>Панель 3</u> — тест на целостность траектории, см. текст. <u>Панель 4</u> — косинус глубинного угла траектории. <u>Панель 5</u> — масса частицы, вычисленная в каждой точке траектории.*

<u>Панель 6</u> – результаты анализа: число измеренных точек на траектории, число точек на одном интервале траектории, знак заряда частицы, z координаты первых точек, масса частицы и неопределённость массы.

Проверка алгоритма определения массы частицы. В спектре массы электронов и позитронов наблюдается избыток событий в области 1 – 2 МэВ (хвост вправо). Очевидно, это связано с большим многократным рассеянием лёгких частиц на пропане, а алгоритм определения массы не корректно обрабатывает малый конечный участок траектории с большой и вариабельной кривизной. Типичная траектория электрона. Требуется специальный алгоритм определения массы, корректно обрабатывающий малый конечный участок траектории с большой и вариабельной кривизной.

Спектр массы измеренных мюонов.

Проверка алгоритма определения массы частицы на траекториях мюонов.

1. Ионизация частицы с измеренной массой 7.5 МэВ и малым глубинным углом. 2. Сплошная кривая - расчёт относительных ионизационных потерь энергии для частицы с массой 8 МэВ. Вертикальная координата начала и конца траектории составляет Z=8 – 17 см.

Разработан метод количественного определения величины ионизации. Он заключается в следующем. Оцифрованные стереопроекции дают доступ к отдельным пикселам изображений. Поэтому можно оперировать с прозрачностью отдельного пиксела. Появляется возможность определить почернение трека в каждой измеряемой точке.

Критерии отбора аномальных частиц.

Обнаружено 47 событий, в которых остановившаяся частица удовлетворяет следующим правилам отбора (признаки аномальной частицы):

a) на конце трека (3 – 4 см от последней видимой точки) частица проявляет повышенную ионизацию, т. е. не различаются отдельные пузырьки и нет видимых разрывов трека;

б) глубинный угол не превышает 40 град. на всей траектории;

в) на конце трека нет повышенного многократного рассеяния, характерного для останавливающихся электронов;

г) радиус кривизны на конечном участке траектории заметно больше, чем у останавливающегося электрона.

Эти привила отбора (кроме пункта б)) являются качественными и зависят от опыта сотрудника.

«аномальные частицы». 2. Копия спектра электронов и позитронов. 3. Копия спектра модел. аномалонов.

Оценка сечения рождения аномального лептона.

Число нуклонов на длине камеры N_N =2,6·10²⁴ см⁻². Число первичных протонов, попавших в камеру $I=5,5 \cdot 10^5$. Число идентифицированных аномалонов N_{alept} = 47 в интервале импульса 20 – 120 МэВ/с. Эффективность регистрации аномальной частицы оцениваем, принимая три параметра: глубинный угол траектории частицы $\theta \leq 40^{\circ}$, средняя длина траектории фотона в камере $L_{\gamma} = 60$ см, радиационная длина пропана $L_{rad} = 104$ см. Получаем оценку эффективности регистрации аномалона $f = (2 \cdot \theta/\pi) \cdot (1 - \exp(-L_{\gamma}/L_{rad})) =$ 0,4·0,42=0,17. <u>Нижнюю границу сечения</u> σ_{alept} вычисляем, используя формулу N_{alept} =I· $N_N \cdot f \cdot \sigma_{alept}$. Результат: $\sigma_{alept} = (0, 19 \pm 0, 03) \text{ MG}.$

Эта величина лежит ниже ранее опубликованных значений верхней границы сечения рождения аномального лептона.

Резонансная кривая Z-бозона /7/. M(Z) = 91.188 ±0.007 ГэВ

Количество нейтрино установлено с большой достоверностью: $n = 2.982 \pm 0.013.$ Следовательно аномальный лептон, обсуждаемый в данной работе, это частица, не связанная с НОВЫМ (четвёртым) нейтрино.

 $\gamma \rightarrow e^+ + l^-$

остальном, природа частицы L неизвестна.

Заключение.

Анализируются события конверсии у кванта в пару заряженных частиц. Найдено 47 аномальных события с массой одной из чатиц ~ 8 МэВ. Искомые частицы лежат в интервале импульса 20 – 120 МэВ/с. Получена оценка время жизни новых частиц 10 – 30 мс. Определена нижняя граница эффективного сечения образования аномальной частицы в протон-нуклонных взаимодействиях. Она составляет (0,19±0,03) мб.

Данное исследование указывает на существование ранее неизвестной частицы с массой (8,6 ± 3,0) МэВ. .

Авторы благодарны А.А. Балдину и А.Ю. Трояну за предоставленную возможность работать с фото материалом пропановой камеры, А.В. Белобородову за организацию и ведение базы данных оцифрованных плёнок. Мы благодарны Беляеву А.В. за содействие и помощь в работе, за создание программы измерения почернения треков. Мы признательны П.В. Номоконову и Ю.П. Петухову за выполнение моделирования процессов распространения частиц в пропане программой GEANT-4. Лаборанты Асмик Григорян, Елена Дмитриева и Татьяна Борисова просмотрели большой объём фотоматериала, отбирая искомые события. Они также выполнили сканирование отобранных в просмотре кадров, за что мы им весьма признательны.

Уровень физики определяет уровень понимания всего окружающего нас мира, определяет уровень интеллектуальной зрелости человечества.

Академик Л.Б.Окунь.

The relation of spiritual and material.

Material interests.

Ideal (spiritual) aspirations of a person.

Available knowledge and technology expand the worldview and search capabilities

The path of civilization.

www.migranov.ru

Этапы пути:

1949 г. – начало проектирования; 1952 г. – начало строительства;

1957 г., 16 апреля, 23 часа 40 минут – есть проектная энергия 10 ГэВ !!;

1972 г. – получен выведенный пучок протонов; 1969 г. – ускорение дейтронов; 1981 г. – ускорение ядер от H до Si; 1983 г. – ускорение поляризованных дейтронов;

2002 г. – Конец работ на СФ.

Синхрофазотрон. Общий вид