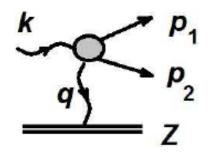
Комментарий: О поиске новых легких заряженных частиц


А.И. Львов

(совместно с: В.И.Алексеев, В.А.Басков, В.А.Дронов, Ю.Ф.Кречетов, В.В.Полянский, С.С.Сидорин)

Это не новые результаты, а наши старые комментарии – в помощь пониманию результатов группы Никитина В.А.

- 1) Легко ли заметить новую легкую нестабильную заряженную частицу L, которая должна «в изобилии» (?!) рождаться на ускорителях в электромагнитных процессах типа Бете-Гайтлера?
- 2) Ограничения на массу и спин L из а.м.м. мюона. Спин = 1 *??

Пары заряженных частиц $\ell^+\ell^-$ могут рождаться фотоном в кулоновском поле ядра (механизм Бете-Гайтлера)

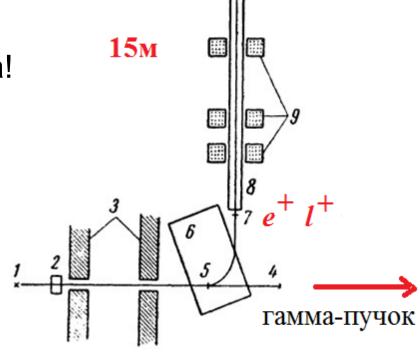
По сравнению с сечением рождения электрон-позитронных пар такое сечение подавлено квадратом масс частиц

$$\sigma(\ell^+\ell^-) / \sigma(e^+e^-) \sim (m_e/m_\ell)^2 \sim 1/400$$
.

Кроме того, сечение рождения $\ell^+\ell^-$ пар размазано по телесному углу, который в ~400 больше, чем в электронном канале. Поэтому в угловой области, где велик выход e^+e^- , количество $\ell^+\ell^-$ пар подавлено на 4-5 порядков. Искать и наблюдать такие пары следует при больших углах.

3. An early experiment on photoproduction of "anomalous leptons" (LPI, synchrotron S-25, 265 MeV. 1959)

Эксперимент сделан на С-25 – в подвале Питомника!

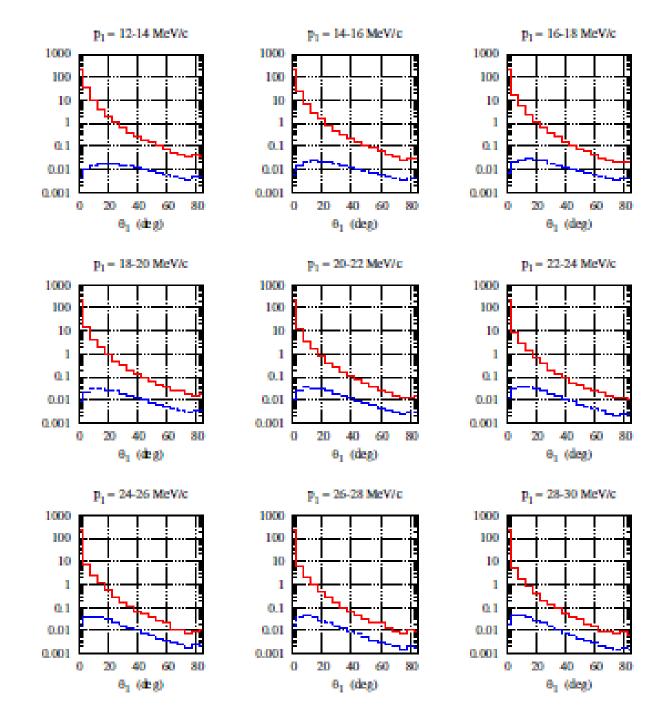

Журнал экспериментальной и теоретической физики **Т. 37**1959

Вып. 6(12)

ПОИСКИ ЧАСТИЦ С МАССАМИ ОТ 6 ДО 25 ЭЛЕКТРОННЫХ МАСС

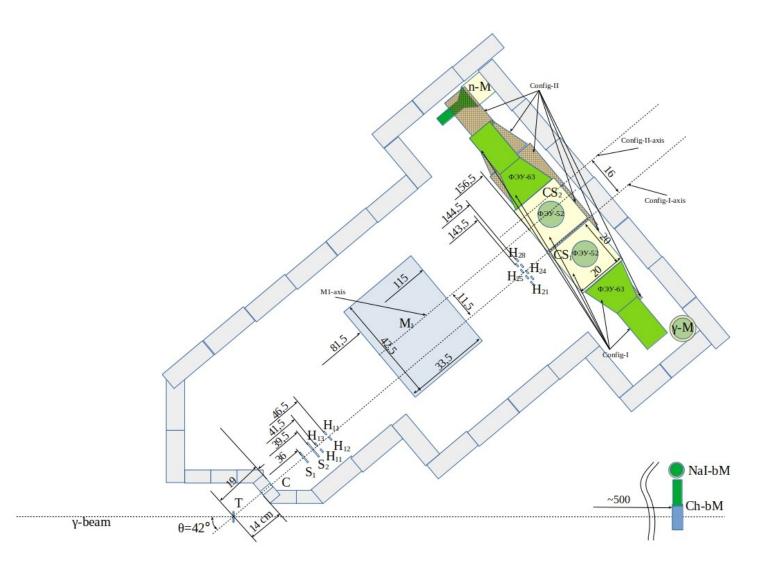
А. С. Белоусов, С. В. Русаков, Е. И. Тамм, П. А. Черенков

Описываются эксперименты, поставленные с целью выяснить, генерируются ли γ -квантами частицы с массами M от 6 до 25 электронных масс с сечениями, следующими из электромагнитной теории образования пар. Для этой цели, с помощью быстрых схем совпадений, измерялось время пролета частицами с заданным импульсом расстояния между двумя сцинтилляционными счетчиками. Частицы генерировались в свинцовой мишени, помещенной в пучок тормозного излучения синхротрона. Сравнивались рассчитанные теоретически и полученные экспериментально скорости счета совпадений для параметров установки, отвечающих регистрации частиц с ожидаемой массой. В каждой серии опытов измерялось также отношение скорости счета электронов к скорости счета фона. Полученные результаты показывают, что под действием γ -квантов частицы с единичным зарядом, спином 1/2 и массами от 6 до 25 m_e не образуются с сечениями, следующими из электромагнитной теории.



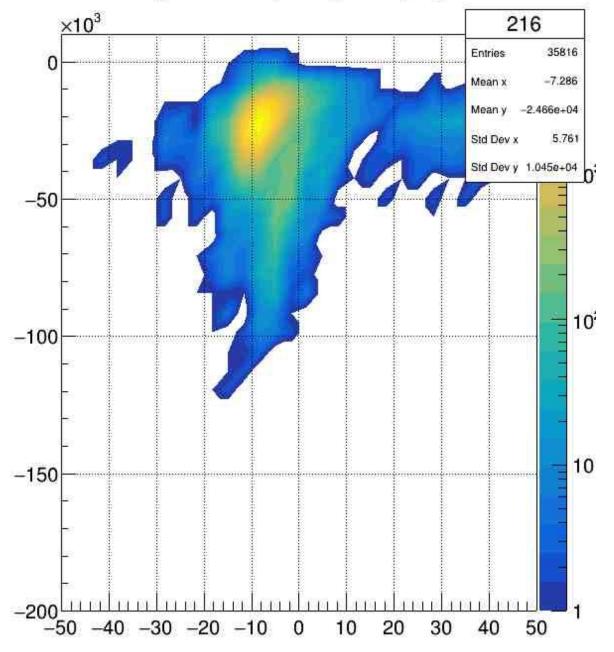
Геометрия опыта: 1— мишень синхротрона, 2— мониторная камера, 3— свинцовые коллиматоры, 4— направление пучка тормозного излучения, 5— свинцовая мишень, 6— магнит, 7— сцинтилляционный счетчик, 8—вакуумная труба, 9— фокусирующие линзы, 10— сцинтилляционный счетчик

Моделирование выходов процесса Бете-Гайтлера для легких и тяжелых частиц


Example of simulation of yields of e+eand 9-MeV leptons (of spin ½) produced by 300 MeV bremsstrahlung photon beam (10⁸ photons/sec) off a 1mm copper target. Red cures = electrons, Blue curves = 9-MeV "leptons".

At medium angles "leptons"/electrons ~ 10%.

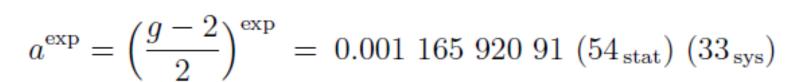
Экспериментальная установка для регистрации Бете-Гайтлеровских частиц под углом 40° (постоянно поправляется и улучшается)

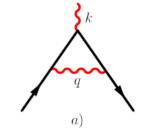

С-25Р (ФИАН, Троицк), весна 202

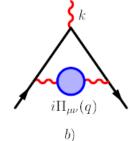
Собираемый заряд (энергия) vs запаздывания. Предварит. данные. (пример).

Пятно в центре – позитроны. Рядом - ?

g:CS2E Q(MeV)-vs-T(ns)


Quantum numbers of the "anomalous lepton"?


```
Decays are seen \ell \to e + ? i.e. \ell \to e + v or \ell \to e + \gamma
Simplest possibilities for spin of \ell: spin = 0 spin = \frac{1}{2} spin = 1
```


2. Standard model and limitations on $\ell^+ + \ell^-$ from the muon a.m.m.

Almost no space in SM for additional particles!

 $a = \frac{g-2}{2} = a^{\mathrm{QED}} + a^{\mathrm{EW}} + a^{\mathrm{hadr}}$

$$a^{\text{SM}} = \left(\frac{g-2}{2}\right)^{\text{SM}} = 0.001\ 165\ 918\ 23\ (1_{\text{weak}})\ (34_{\text{LO hadr}})\ (26_{\text{NLO hadr}})$$

$$a^{\text{QED}} = \left(\frac{\alpha}{2\pi}\right) + 0.765857425(17)\left(\frac{\alpha}{\pi}\right)^2 + 24.05050996(32)\left(\frac{\alpha}{\pi}\right)^3$$

$$+130.8796(63)\left(\frac{\alpha}{\pi}\right)^4 + 753.3(1.0)\left(\frac{\alpha}{\pi}\right)^5 + \dots = 0.001\ 165\ 847\ 19$$

 $a^{\mathrm{hadr}}[\mathrm{LO}] = 0.000~000~069~31(34)$ \leftarrow Here might be anomalous leptons

$$\Delta a = a^{\text{exp}} - a^{\text{SM}} = (2.68 \pm 0.63_{\text{exp}} \pm 0.43_{\text{th}}) \times 10^{-9}$$

Nuclear Physics B57 (1973) 263-268. North-Holland Publishing Company

ON THE LOWER LIMITS FOR THE MASSES OF HYPOTHETICAL CHARGED PARTICLES

L.G. DEDENKO

Moscow University, USSR

G.V. DOMOGATSKY and I.M. ZHELEZNYKH

Institute for Nuclear Research, Moscow, USSR

V.A. PETRUNKIN

P.N. Lebedev Physical Institute, Moscow, USSR

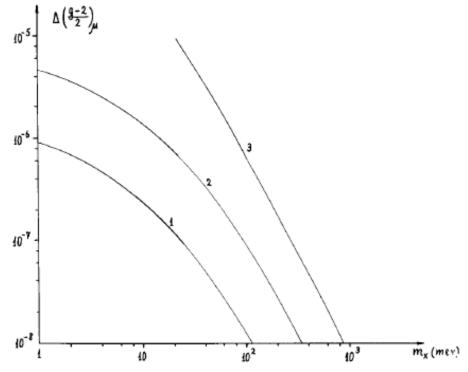


Fig. 1. The contribution of hypothetical scalar (1), spinor (2) and vector (3) charged particles to the a.m.m. of the muon $((g-2)/2)_{\mu}$.

Abstract: Lower bounds on the masses of hypothetical charged particles with spin $S(0, \frac{1}{2} \text{ and } 1)$ are obtained from the present data on the muon anomalous magnetic moment: $m_0 \ge 2.5 \text{ MeV}, m_{\frac{1}{2}} \ge 24 \text{ MeV}, m_1 \ge 100 \text{ MeV}$ (84% confidence level). An expected improvement in the experimental error in $((g-2)/2)_{\mu}^{\text{exp}}$ to the order of $\pm 2 \times 10^{-8}$ might result in the increase of the lower bounds on these masses to $m_0 \ge 50 \text{ MeV}, m_{\frac{1}{2}} \ge 170 \text{ MeV}$ and $m_1 \ge 430 \text{ MeV}$ (84% confidence level).

2a. Contribution of anomalous leptons to a.m.m. ("hadron")

$$\Pi_{\mu\nu} = (q_{\mu}q_{\nu} - q^{2}g_{\mu\nu})\Pi(q^{2})$$

$$\frac{-i}{q^{2}} \rightarrow \frac{-i}{q^{2}} + \frac{-i}{q^{2}} iq^{2}\Pi \frac{-i}{q^{2}} + \dots = \frac{-i}{q^{2}(1-\Pi)}, \qquad \Pi(0) = 0$$

a.m.m. =
$$\int \frac{d^4q}{(2\pi)^4} \, \frac{q^2\Pi}{q^2 \, q^2} \, (\Gamma S \Gamma S \Gamma)$$

Unsubtracted dispersion relation is usually applied:

a.m.m. =
$$\frac{1}{\pi} \int \frac{\text{Im }\Pi(t)}{t} K(t) dt$$
 $K(t) = \frac{\alpha}{\pi} \int_0^1 \frac{x^2(1-x) dx}{x^2 + (t/m_\mu^2)(1-x)}$

$$\Delta \left(\frac{g-2}{2}\right)_{\mu} = \frac{1}{4\pi^3} \int_{4m_{\rm X}^2}^{\infty} \int_{0}^{1} \frac{\sigma(s) \left(1 - \frac{4m_{\rm e}^2}{s}\right) x^2 (1-x)}{\left(1 + \frac{2m_{\rm e}^2}{s}\right) \left[x^2 + \frac{s}{m_{\mu}^2} (1-x)\right]} \, \mathrm{d}s \, \mathrm{d}x \,, \tag{1}$$

where $\sigma(s)$ is the total cross section of the process $e^- + e^+ \rightarrow x^+ + x^-$ in the one-photon approximation. Let us suppose that x-particles do not take part in strong interactions and therefore their electromagnetic form factors are equal to one. Sub-

Polarization operator and contributions of $\ell^+ + \ell^-$ to the muon a.m.m.

spin 0:
$$\operatorname{Im}\Pi(t) = \frac{\alpha}{12} \left(1 - \frac{4M^2}{t}\right)^{3/2}$$
 a.m.m. of the muon (in 10^{-6}) spin 1/2:
$$\operatorname{Im}\Pi(t) = \frac{\alpha}{3} \left(1 - \frac{4M^2}{t}\right)^{1/2} \left(1 + \frac{2M^2}{t}\right)$$
 spin 1:
$$\operatorname{Im}\Pi(t) = \frac{\alpha}{12} \left(1 - \frac{4M^2}{t}\right)^{3/2} \left(3 + \frac{t}{M^2}\right)$$
 0.1
$$\operatorname{Blue} = \operatorname{spin} 0$$
 0.01
$$\operatorname{Red} = \operatorname{spin} \frac{1}{2}$$
 0.1 1 10 100 1000 M (MeV)

Available space from (Exp – SM) < 4.2×10^{-9} (within 2σ) Hence the limits on the "lepton" mass M:

Spin of
$$\ell = 0$$
 M > 190 MeV
Spin of $\ell = \frac{1}{2}$ M > 550 MeV

(update of Dedenko, Domogatsky, Zheleznykh, Petrunkin. 1973)

Более тонкий случай – спин 1.

Тогда интеграл формально расходится. Что это значит? Возникают ли тогда ограничения на массу L со спином 1?

В стандартной модели сходимость достигается включением духовых состояний с отрицательной метрикой, которые сопровождают вклады калибровочных бозонов. Так что частицу со спином 1 втиснуть в данные по а.м.м. можно, если она не одна, а входит в семейство новых частиц — новых нейтральных бозонов, новых хиггсов, А L в этом случае — легкий калибровочный бозон.

Может ли такое быть? Возникают ли противоречия с другими ограничениями? Могут ли существовать дополнительные калибровочные бозоны?? Новые нейтрино, вероятно, нет... А бозоны...

See PDG-2020, Hypothetical Particles and Concepts – параграф 87 - W' boson searches

Во всяком случае, поисковые эксперименты на этот счет не бессмысленны.